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Two numerical methods are proposed for detection of coupling between multiple time series gen-
erated by deterministic nonlinear systems. The first detects interdepenence or the existence of
coupling between time series. The second ascertains directionality of coupling, or alternatively, la-
tent coupling, the case when multiple series are driven by another, unobserved system. In either
case, the driver and the recipients of the coupling may be periodic or aperiodic, and in particular
may be chaotic. The only inputs to the method are two or more simultaneously recorded time series.
The methods rely solely on ranking distances between states in time-delay reconstructions of the
data, and for that reason tend to be robust to observational noise.

I. INTRODUCTION

Determining causal relationships is a fundamental
challenge across scientific and engineering disciplines.
For nonlinear deterministic systems, inferring causality
from observational time series data is particularly com-
plex and often counterintuitive. This happens when the
assumption of separability of causes breaks down due to
interdependent coupling, or where nonlinear dynamics
allows causation to occur in the absence of correlation.
Nevertheless, significant progress has been made in lever-
aging non-separability to uncover instances where the dy-
namics of one system may influence or drive another. In
this article, we introduce a robust method to address this
problem, utilizing order statistics derived from relative
distances within a reconstructed phase space.

Given two nonlinear systems X and Y , and their time
series observations {xt} and {yt}, we develop criteria to
decide which of the following relations hold:

1. Unidirectional Coupling: X drives Y (X → Y )
or Y drives X (Y → X).

2. Bidirectional Coupling/GS: Both X and Y
drive each other (X ↔ Y ), or the systems are in
generalized synchrony (GS) caused by strong uni-
directional coupling between X and Y.

3. Latent Coupling: X and Y do not influence each
other but appear to be coupled because they are
driven by a third, unobserved dynamical system.

4. Independence: X and Y are dynamically inde-
pendent of one another.

Our methods rely on genericity of the dynamics in
that counterexamples to these criteria may be artificially
constructed, but are not expected to be common in gen-
eral circumstances.

Generalized synchrony [1] (GS) is the circumstance
when each state ofX occurs simultaneously with a unique
corresponding state of Y , and vice versa. This is distinct
from the special case of identical synchrony [2] where
X = Y and the corresponding states are identical. Gen-
eralized synchrony is often observed as a result of unidi-
rectional driving that is relatively strong, although (per-
haps surprisingly) it can also occur for weak unidirec-
tional driving. An example of this, and a more detailed
description of GS, is contained in Section IV. Under gen-
eralized synchrony, it is likely that no conclusions can be
made from observed time series alone concerning direc-
tionality of the coupling.
In systems that are dominated by linear dynamics or

noise, Granger causality [3] is recognized as an effective
means of ascertaining directionality of coupling between
systems from observed time series. Granger causality is
based on the intuitive idea that causal coupling X → Y
is established when the prediction of system Y improves
when observations from system X are included in the
model. Implementations using linear cointegration, en-
tropy [4] or mutual information [5, 6] have been developed
and used successfully for this purpose.
Therefore, it is somewhat surprising that for finite-

dimensional nonlinear systems under generic conditions,
Granger causality-based methods are ill-posed. Indeed,
the phenomenon of generalized synchrony means that if
X drives Y , once the state of Y is identified from obser-
vations (for example by time-delay embedding, assuming
sufficient data is available), X obviously can provide no
further information about the state of Y , meaning that
Granger causality has no power to identify the fact that
X → Y . Moreover, even without synchrony, Takens’ the-
orem [7, 8] shows that X cannot add more information
because the state of X can be determined from histories
of Y . Conceptually, the lack of separability of effects that
lies at the foundation of Granger causality eliminates its
theoretical basis for making accurate directionality as-
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sessments in deterministic nonlinear systems in the large
data limit (see [9] for a discussion of this issue).

The concepts of time-delay embedding [7, 8] imply
that each state of a dynamical system can be represented
uniquely by a sufficiently long delay vector constructed
from time series observations. Suppose X and Y are de-
terministic dynamical systems and that X has an input
to Y , but that there is no return input from Y incident on
X. Then, under technical conditions that are satisfied in
general circumstances, we can expect to reconstruct the
entire combined dynamical system X → Y from observa-
tions yt of Y . The same is not possible from observations
on X only, since observations on X will lack information
about Y , and therefore fail to reconstruct the entire cou-
pled system. We exploit this asymmetry in our methods.

This asymmetry has been exploited before, for exam-
ple in [10], and more widely in the Convergent Cross
Mapping method [9]. This latter reference included the
crucial ingredient of tracking the asymmetry as a func-
tion of the length of data, and was successfully applied to
experimental data in [11, 12], and in a version based on
sorting in [13]. Exploitation of this asymmetry to study
latent coupling in deterministic systems was addressed in
[14] and more recently in [15].

Inspired by these prior results, here we describe a uni-
fying approach, that attempts to affirmatively detect di-
rectional and latent coupling, and is compatible with sta-
tistical methods that provide confidence intervals. We
exploit the asymmetry in delay-coordinate reconstruc-
tions to establish these statistical tests. The approach
is robust in that it depends only the relative sizes of the
pairwise distances of points in the reconstructions with
respect to others.

II. DELAY EMBEDDING

The tests in the next section rely on the reconstruction
of dynamics from a history of observations, in particular
time series. The theory behind reconstruction was put
on a firm theoretical footing by the embedding theorem
of Takens [7], following similar ideas in [16]. This foun-
dational work led to applications in a wide array of fields,
including geophysics [17, 18], neuroscience [10, 19], ecol-
ogy [9, 20, 21], fault analysis [22], and data assimilation
[23].

Assume that {xt}, 1 ≤ t ≤ N , is a time series measured
from a finite-dimensional compact attractor X of a dy-
namical system at discrete times t. For a given time t, de-
fine the vector of observations Xt = [xt, xt−1, . . . , xt−e+1]
for some integer e which we call the embedding dimen-
sion. The collection of such Xt comprise the time-delay
reconstruction of the attractor X. Here we are assuming
that there is a measurement function hX from the sys-
tem X to the real numbers that produces xt = hX(t), an
observation of system X at time t.

The main theorem of [7] states that for generic con-
ditions and sufficiently large e, there is a one-to-one bi-

jection between the states of a smooth manifold X and
the reconstructed states Xt = [xt, xt−1, . . . , xt−e+1]. The
underlying genericity assumption for this theorem is that
both the dynamics of X and the observation function hX

are not special, meaning that if it fails for X, there is
another system infinitesimally close to X for which the
conclusion holds. Later work [8] simplified the main idea
somewhat, by allowing X to be fractal (a non-manifold),
and requiring genericity on the observation function only,
assuming mild and specific conditions on the equilibria of
the attractor X. The latter article also replaced the con-
cept of genericity itself with a more probabilistic concept
called prevalence.
Expanded versions of Takens’ theorem show that in

place of univariate time series, multivariate time series
may be used to reconstruct the dynamical system [8, 24].
In this article, the results remain unchanged whether the
reconstruction is made from univariate or multivariate
times series, since only the fundamental property of a
one-to-one correspondence is relevant to the success of
the statistical tests.
The two tests we propose depend on the bijection

promised by the theory under general conditions. That
is, for each state of X, or X and Y if they are coupled, we
assume that both the dynamics and the observations are
not special, so that the delay coordinate reconstruction
faithfully replicates the upstream dynamical states.

III. STATISTICAL TESTS

Two statistical tests are proposed. The goal of the first
(DetC) is to determine whether two systems are coupled
at all. If the pair of systems passes this test, we propose a
second test (DirC) to determine the direction of coupling,
or more precisely, to identify one of the relationships (1)
- (3) above.

A. Detection of coupling

Delay coordinate embedding leads to a test of the ex-
istence of coupling between X and Y , which we call the
Detection of Coupling Test. Assume we have simultane-
ous time series {xt} and {yt} of length N measured from
X and Y , respectively, and that we form delay coordi-
nate vectors {Xt} and {Yt} as above. Fix time t and a
number of nearest neighbors n. Find the n nearest neigh-
bors {Yt1 , . . . , Ytn} of Yt in terms of Euclidean distance.
Consider the set {Xt1 , . . . , Xtn}, in other words the si-
multaneous appearances of the reconstructed Xtj in the
X system, and consider their relationship as neighbors
to Xt, the simultaneous correlate to Yt. If X and Y are
independent, the set {Xt1 , . . . , Xtn} should have no spe-
cial relationship to Xt. On the other hand, if X drives
Y , then each Yt determines a unique state in X and Y ,
and the nearest neighbors Ytj correspond to simultane-
ous Xtj that are relatively near Xt (in particular much
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nearer than random choices from the X time series). The
same is true if instead of X → Y , there is a latent cou-
pling, meaning a third system D such that D → X and
D → Y .

This distinction can be analyzed statistically, due to
the theory of order statistics (see, e.g., [25]). Given a
uniform random choice of n numbers from the interval
[0, 1], the jth smallest of the n numbers follows a beta
distribution Beta(j, n− j+1), whose mean and variance
are µ = j/(n+1) and σ2 = j(n+1−j)/((n+1)2(n+2)),
respectively.

We will apply this fact in the following way. Con-
sider a time step 1 ≤ t ≤ N , the reconstructed state Yt,
and its n nearest neighbors Ys1 , . . . , Ysn according to the
Euclidean distance di = |Yt − Ysi | from Yt. Define the
subset Xs1 , . . . , Xsn of contemporaneous delay vectors at
the times s1, . . . , sn, and their distances di = |Xt −Xsi |
from Xt. As mentioned above, we would like to know
whether the X subset is as close to Xt as the Y subset
is close to Yt.

Each distance ds = |Xt −Xs|, 1 ≤ s ≤ N − e, can be
assigned a relative rank among all N − e distances of the
reconstructed states, as follows. If ds is the Rsth smallest
distance from Xs, let rs = Rs/(N−e) denote the relative
rank. By construction, the rs are uniformly distributed
between 0 and 1. If the subset S = {rs1 , . . . , rsn} is
randomly chosen from the entire set, order statistics gives
the expected relative position of the jth smallest number
r(j) of the subset to be j/(n+1). On the other hand, if the
subset S is chosen randomly from a reduced proportion p
of the entire set, then the expected relative position will
be jp/(n+ 1). Therefore we can use

p̂ =
(n+ 1)r(j)

j
(1)

for each 1 ≤ j ≤ n, as an estimator for p. If the dy-
namical systems X and Y are uncorrelated, we expect to
recover p = 1 for each j. If there is a direct or indirect
coupling between the two systems, the contemporaneous
delay vectors in S will be chosen from a portion of the
attractor that is limited in extent, with a corresponding
proportion of the state space p < 1.
Summarizing this discussion, the following test aver-

ages the estimate over the time series Xt as a null hy-
pothesis for independence of the two time series.

Detection of Coupling Test: DetC(X,Y). For each
t, find the n nearest neighbors of the delay vector Yt and
denote their times s1, . . . sn. Sort the entire set of N − e
distances |Xt−Xs| for 1 ≤ s ̸= t ≤ N−e+1, and for each
1 ≤ j ≤ n, find the relative rank r(j) of the jth smallest
distance in the subset S = {|Xt −Xs1 |, . . . , |Xt −Xsn |},
among the entire set {|Xt −Xs|}. For each j, 1 ≤ j ≤ n,
an estimate p̂ is found from the expected value

p̂ = E
[
(n+ 1)r(j)

j

]
averaged over t. The value of p is equal to 1 if and only
if there is no coupling between X and Y .

(a) (b)

FIG. 1. DetC and DirC tests applied to time series from skew
system X → Y . (a) For zero forcing (upper curves), both
DetC(X,Y) (blue traces) and DetC(Y,X) (red traces) show
that 1 lies inside the confidence intervals for p, and for positive
forcing (lower curves), 1 lies outside the confidence intervals.
(b) For nonzero forcing, the slope estimate for DirC(X,Y)
(blue trace) rejects zero, and DirC(Y,X) (red trace) does not,
correctly implying a forcing X → Y .

We apply a one-sample Student’s t-test to assign a con-
fidence interval to the estimate p̂, A 95% interval around
p̂ contains the possible values of p with 95% certainty,
and we would like to know whether the interval contains
p = 1. Since the one-sample t-distribution has N − 2 de-
grees of freedom, it is well approximated by the normal
distribution for large N , which represents two standard
deviations for the 95% level. (Note that we can further
average over e to decrease the variance even more, al-
though we have not done so in the examples, where a
fixed e = 8 was used.)
Figure 1(a) shows the results of the DetC test for ob-

servations of X and Y where X → Y for two different
coupling strengths. When the coupling is zero (top red
and blue curves) the null hypotheses p = 1 is not re-
jected, and we conclude there is no coupling. When the
coupling is positive (lower red and blue curves) the null
is rejected, and coupling is concluded.
The length-1000 time series in Fig. 1 were generated by

coupled discrete dynamical systems. Both X and Y are
two-cell networks of Hénon-like [26] maps. Specifically,
each X or Y consists a four-dimensional discrete map of
two Hénon-like maps coupled together, with equations

xi+1 = b1 cosxi + c1yi + d1ui

yi+1 = xi

ui+1 = b2 cosui + c2vi + d2xi (2)

vi+1 = ui

Here the parameters bi, ci, and di were chosen randomly
near 2.2, 0.1, and 0.1, respectively, which resulted in
chaotic dynamics in the network. The time series ob-
servation from each network is the x variable. The cou-
pling between the two networks is achieved by adding
the x-variable from one system to the u-variable of the
other, multiplied by a coupling strength (either 0 or 0.2)
in Fig. 1.

The map in Hénon’s original paper [26] is often studied
due to the fact that it has a chaotic attractor near a basin
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boundary. Here we use a variant of the original Hénon
map. The version used in (2) replaces a quadratic term
in the x equation with a cosine, which retains the chaotic
dynamics but moves the basin boundary of the attractor
far away, to enhance stability when used in a network.
In equation (2), two such maps are coupled together to
produce a hyperchaotic attractor of correlation dimen-
sion slightly greater than 2.0. Each of the attractors X
and Y in Fig. 1 and 2 is an attractor of this type.

B. Direction of coupling

The second test assesses directionality of the coupling.
Our general assumption is that there is an unknown
finite-dimensional attractor embodying one of the above
scenarios (1) - (3), and that it is observed in some way by
two time series that have each been used to reconstruct
dynamics as in Takens’ theorem.

First assume that relation (1) holds. Thus a unidi-
rectional coupling exists, which we will without loss of
generality suppose is X → Y . Further assume that time
series recorded from both X and Y are used for time
delay reconstruction using generic observations functions
and sufficiently large embedding dimension e required by
Takens’ Theorem. Let R(X) (resp. R(Y )) denote the
reconstructed attractors, and let TX,X , TY,X and TY,Y

denote the projections from the reconstructions to X and
Y as shown in the diagram:

R(X) R(Y )

X Y
TX,X TY,X

TY,Y

Takens’ theorem implies that generically, there is a home-
omorphism betweenR(X) andX, and also betweenR(Y )
and the skew product X → Y . Since there are projec-
tion maps from the skew product toX and Y , we see that
the three maps in the diagram are well-defined. While
the map TX,X is one-to-one, the other two maps are not:
Although R(Y ) reconstructs the skew product X → Y ,
unless X and Y are in general synchronization, TY,X and
TY,Y will fail to be one-to-one, because there is no re-
turn coupling Y → X. In particular, the inverse image
T−1
Y,X(x) will generally be more than one point, since the

state of X does not determine the contemporaneous state
of Y .
As observers, our access to this diagram is only along

the top row. According to the diagram, the recon-
structed state Yt in R(Y ) corresponds to a single point
T−1
X,XTY,X Yt in R(X). That means for each Yt, only a

single pair of simultaneous states (Xt, Yt) will exist. On
the other hand, a reconstructed state Xt in R(X) corre-
sponds to a non-singleton set of points T−1

Y,XTX,X Xt in

R(Y ), since TY,X is not one-to-one. This is the asymme-
try referred to earlier. For each Xt, there is a multiple
point set of simultaneous pairs (Xt, Yt). If we can use the

observed time series to distinguish betwen the two cases,
one point versus multiple points, for pairs (Xt, Yt), we
can infer in which direction the coupling exists.
The case (2) of bidirectional coupling is simpler, be-

cause under generic conditions, each of the reconstruc-
tions R(X) and R(Y ) are in one-to-one correspondence
with states of the bidirectionally-coupled system X ↔ Y ,
and therefore R(X) and R(Y ) are in one-to-one corre-
spondence. Unlike the asymmetric case (1), in case (2),
for each Xt in R(X) there is a unique Yt in R(Y ), and
vice versa.
Now consider the case of latent coupling (3), where

there is an unobserved driver D that is coupled to both
the observed systems X and Y , but no direct connection
between X and Y , as in the diagram:

D

X Y

Then observations from X (resp. Y ) reconstruct the
skew product D → X (resp., D → Y ). This results in
the diagram

R(X) R(Y )

X D Y

TX,X

TX,D TY,D

TY,Y

where none of the four maps are one-to-one. Now both
T−1
X,DTY,D Yt and T−1

Y,DTX,D Xt comprise sets of multiple
points, i.e. more than one. This observation suggests
a criterion for X and Y being driven by an unobserved
system, which is that for each Xt, there are multiple si-
multaneous (Xt, Yt), and the same for each Yt.
Although not essential for the goals of the present ar-

ticle, this structure can be exploited to theoretically re-
construct a latent driver D from time series observations
as follows. Consider a state Yt in R(Y ). In this case,
T−1
X,DTY,D Yt consists of multiple points {Xi} by assump-

tion, usually dispersed along a proper subset of R(X).
For each of the Xi, we can repeat the process in the op-
posite direction, which represent different indices in the
time series. By assumption, the T−1

Y,DTX,D Xi are multi-
ple points sets in Y , only one of which one is the original
Yt. Recursing this process identifies an equivalence class
of point sets in both R(X) and R(Y ), which corresponds
to a theoretical state d linked to the multiple points in
R(X) and R(Y ). If we repeat this construction for all Yt

in R(Y ) and Xt in R(X), these equivalence classes repre-
sent the states of an unobserved attractor D that implies
scenario (3), i.e. latent coupling D → X and Y . This
process of reconstructing the driver was the subject of
[14], which was recently put on a more stable numerical
footing [15].
The preceding discussion clarifies the critical distinc-

tion between the cases (1) - (3), which depends on
whether the sets (Xt, Yt), for fixed Xt or Yt, are singleton
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sets or more than one element. The possibilities can be
summarized in a diagram:

(Xt, many Ys) (Xt, single Ys)

(many Xs, Yt)

D

X Y

Y → X

(single Xs, Yt) X → Y

X ↔ Y
or

Generalized
Synchrony

The following test is designed to determine which of
these cases hold, using only the observed time series. The
logic is as follows: If for a given Yt, there is a unique
corresponding time delay vector Xt, then if we look at
the Xs that are time-contemporaneous with Ys that are
close to Yt, these Xs should be close to Xt. The test
checks to see whether the Xs progressively move farther
from Xt as the Ys are moving away from Yt.

Direction of Coupling Test: DirC(X,Y). For each
t and 1 ≤ j ≤ n, find the jth nearest neighbor of the
delay vector Yt and denote its time sj . Sort the entire
set of distances |Xt − Xs| for 1 ≤ s ̸= t ≤ N , and find
the percentile rank r(j) of the distance |Xt−Xsj | among
the entire set. Let r̂(j) denote the average percentile rank
over all t. Plot the best fit line through the points (j, r̂(j)).
A slope greater than zero is evidence that for each Yt,

the set of possible simultaneous pairs (Xt, Yt) is a single
pair. A slope indistinguishable from zero is evidence that
it is a set of multiple pairs (i.e., not a singleton).

Confidence intervals for the DirC test can be developed
similarly to the DetC test. For the line fit y = α + βt
where we use a one-sample Student-t test to compare the
slope β with the null hypothesis β = 0, the radius of the
95% confidence interval is s = (2

∑n
i=1(yi − ŷi)

2)/((n −
2)

∑n
i=1(xi − x)2).

Figure 1(b) demonstrates the use of DirC. Here the
two 2-cell Henon maps X and Y are coupled as X → Y .
The slope in DirC(X,Y) is positive, which provides evi-
dence that for each Yt, there is a unique Xt that can exist
simultaneously with Yt. On the other hand, the slope of
DirC(Y,X) cannot be distinguished from zero, meaning
that there are multiple Yt corresponding to a given Xt.
These results are consistent with case (1), unidirectional
coupling from X to Y .
The two tests proposed in this article can be used to-

gether in the following way. If the Detection of Coupling
Test is passed in either of the X or Y directions, the
remaining possible relations are (1) - (3). Then, the Di-
rection of Coupling Test applied to both X and Y will
distinguish between the remaining four possibilities. In
the table, DirC(X,Y) + means the slope is determined to
be greater than zero, and DirC(X,Y) 0 means zero slope
cannot be rejected.

(a) (b)

FIG. 2. DirC test applied to (a) bidirectional coupling
X ↔ Y and (b) latent coupling D → X,D → Y . DirC(X,Y)
in blue and DirC(Y,X) in red. (a) Both slope estimates reject
zero slope, correctly implying bidirectional driving. (b) Nei-
ther of the slope estimates reject the null hypothesis of zero
slope, correctly implying latent coupling from an unobserved
common driver.

DirC(Y,X) 0 DirC(Y,X) +

DirC(X,Y) 0 latent D → X,Y Y → X
DirC(X,Y) + X → Y X ↔ Y or GS

Fig. 2 demonstrates the use of the DirC test for time
series collected from two 2-cell H enon maps in cases (2)
and (3). In Fig. 2(a), the times series are generated from
a system X ↔ Y with two-way driving. The DirC(X,Y)
and DirC(Y,X) both identify positive slope outside the
confidence interval, concluding bidirectional driving as in
case (2). In Fig. 2(b), zero slope cannot be rejected in
either DirC(X,Y) or DirC(Y,X), indicating latent driving
from an unobserved system as in case (3).

The tests can also be applied to continuous systems
such as coupled Lorenz [27] systems. For example, let
X,Y , and Z each be systems of the form

ẋ = σ(y − x)

ẏ = −xz + ρx− y (3)

ż = xy − βz

with slightly different parameter values near σ = 10, ρ =
28, β = 8/3. Further, we couple them in a small network
as in (A) or (B) below,

(A)

X

Y Z

(B)

X

Y Z

where each arrow represents a term cx proportional to the
x-variable of the driving Lorenz system added to the y-
variable of the target system. The following table shows
the results of applying DirC to both scenarios, using s =
0.3:
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(a) (b)

FIG. 3. Comparison of DirC versus coupling strength for
unidirectional driving X → Y . The mean of the DirC slope
over 50 realizations of length 1000 times series of X → Y
is plotted along with its standard error. (a) Two-cell Hénon
example (b) Lorenz equations.

(A)
slope

X → Y 0.68± 0.13 +
Y → X 0.50± 0.26 +
Y → Z 0.61± 0.17 +
Z → Y 0.39± 0.22 +
Z → X 0.62± 0.24 +
X → Z 0.42± 0.14 +

(B)
slope

X → Y 0.76± 0.20 +
Y → X 0.15± 0.36 0
Y → Z 0.25± 0.17 +
Z → Y 0.13± 0.16 0
Z → X 0.07± 0.23 0
X → Z 0.47± 0.22 +

The slopes are shown along with the 95% confidence
intervals. A plus sign in the right column means that the
corresponding coupling was determined to exist by the
test, and 0 means the coupling was not detected to the
confidence level. There are six possible couplings. We
note that in scenario (A), all three systems are driven
by each of the others, directly or indirectly, and accord-
ingly, the DirC test detects that coupling in each case.
In scenario (B), the DirC test correctly detects the three
drivings X → Y, Y → Z, and X → Z, and finds no
evidence of the other three possibilities.

To investigate the sensitivity of the DirC test with
respect to parameters, we compared the results for dif-
ferent coupling strengths and observational noise levels.
Fig. 3(a) shows the dependence on the DirC test on cou-
pling strength. The data series of length 1000 was gener-
ated from a coupled system X → Y with dynamics from
the two-cell Hénon map (2). The coupling between the
two networks is achieved by adding a constant c times
the x-variable from X to the u-variable of Y . Fig. 3(a)
plots the DirC statistic versus the coupling strength c.
For small c, the 95% confidence intervals of statistics
DirC(X,Y) and Dir(Y,X) overlap. For increased c, they
no longer overlap and definitively pick up the correct di-
rection of driving. Fig. 3(b) shows a similar result from
coupled Lorenz systems X → Y .

Fig. 4(a) shows that the DirC test degrades gracefully
with increased observational noise. For small noise the
test easily identifies the driving X → Y , and as noise is
increased, the test begins to fail. Fig. 4(b) shows similar
outcomes but for Lorenz systems. In Fig. 4, time series
of length 1000 were sampled from the Lorenz systems,

(a) (b)

FIG. 4. Comparison of DirC versus observational noise for
unidirectional driving X → Y . The mean of the DirC slope
over 50 realizations of length 1000 times series of X → Y
is plotted along with its standard error. (a) Two-cell Hénon
example (b) Lorenz equations.

using sampling interval ∆t = 0.05.

IV. GENERALIZED SYNCHRONY

As mentioned above, the phenomenon of generalized
synchrony (GS) plays a clarifying role in the study of
causation between dynamical systems. A typical exam-
ple is given by a coupled skew systemX → Y where there
is no feedback from Y to X, but where a one-to-one cor-
respondence develops between states of X and states of
Y . That is, after transient behavior, each state of X
coexists with a unique state of Y , and vice versa. This
can occur even when X and Y are different dynamical
systems.
On the one hand, by its existence, GS shows that

Granger causality cannot detect the fact that X → Y ,
since knowledge of the X state cannot add to the abil-
ity to predict future states of Y . (In fact, the logic of
such an ability would be circular, since one could say the
same in the opposite direction.) Furthermore, GS is also
a wild card for the DirC calculation, because the sets of
possible pairs (Xt, Yt) discussed in the derivation of the
DirC method are singletons, both in the non-GS case of
bidirectional coupling X ↔ Y and the case of GS caused
by unidirectional coupling. In other words, for determin-
istic dynamical systems, it is challenging for any method
to distinguish GS under X → Y from the relationship
X ↔ Y on the basis of observed time series alone.
We include here two illuminating examples of general-

ized synchronization for chaotic flows. The first is con-
structed from two Lorenz systems with different param-
eters. Let X and Y be systems of form (3) with param-
eters ρ = 27 and ρ = 30, respectively. With coupling of
1.0x from X added to the y-variable of Y , the system
is not in GS. However, changing the coupling to 1.5x
induces GS between X and Y . On the other hand, a
coupling of cz from X to the y-variable of Y for virtually
any c > 0 causes GS.
To positively verify GS in this example, we first will

assume knowledge of all six phase variables of X and
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(a) (b)

FIG. 5. Test for generalized synchrony. The plot shows the
variance of neighbors of Y points chosen contemporaneously
from neighbors of an X point (upper curves, plotted as cir-
cles), and vice versa (lower curves, plotted with diamonds).
GS is indicated when both variances drop to near zero. (a)
Dark blue curves: Coupling cx from Lorenz X to y-variable of
Lorenz Y . Light blue curves: Coupling c(x+ z) from Lorenz
X to y-variable of Lorenz Y . (b) Dark blue curves: coupling
cx from Rössler X to y-variable of Lorenz Y . Red curves:
coupling cy from Rössler X to y-variable of Lorenz Y . A set
of k = 10 nearest neighbors was used in these plots.

Y . A long trajectory of the coupled system X → Y is
generated, and a strategy similar to DirC, but that does
not require delay coordinates, is used. Specifically, let
pt denote the state of the three Lorenz variables from
the X system at time t, and denote by qt the three Y
system variables at the same time. For a given pt on the
X attractor at time t, we find the nearest k neighbors
ps for some number k. Then we calculate the variance of
the set of distances |qs−qt| for the same t and group of s.
The signature of global synchrony is when this variance
drops to near zero.

The median of this variance as we sweep over pt on X
is plotted in Figure 5(a), along with the reverse: Starting
with k neighbors of qt on Y and gathering contempora-
neous points on X. For small coupling X → Y achieved
by adding a coupling strength times the x variable of X
to the y variable of Y , there is no synchronization. When
coupling strength reaches 1.5, the systems are in general
synchronization. Figure 5(a) also shows that using a cou-
pling proportional to x + z instead of to x leads to GS
for almost all positive coupling strengths.

When we can only measure time series ofX and Y , and
have a smaller data set, we can apply the DirC test to
distinguish between unidirectional coupling X → Y that
does and does not result in GS. The results of analyzing
a 1000 point time series of x-coordinates observed from
X and Y is shown in Fig. 6. In Figure 6(a), X drives Y
by adding 0.4x to the y-variable of Y . Fig. 5(a) indicates
that generalized synchrony does not occur in this case.
Accordingly, DirC correctly concludes unidirectional cou-
plingX → Y . When the driving is increased to 1.4x, gen-
eralized synchrony occurs, and we find that DirC rejects
zero slope in both directions, as shown in Fig. 6(b). The
explanation for this result is generalized synchronization
caused by unidirectional coupling X → Y , not two-way
driving X ↔ Y .

(a) (b)

FIG. 6. Outcome of DirC for data from Lorenz systems X →
Y , DirC(X,Y) in blue and DirC(Y,X) in red. (a) Coupling
c = 0.4x, (not in general synchronization), only XY slope
statistically greater than zero, implying case (1). (b) Coupling
c = 1.4x (forces generalized synchronization), XY and YX
slopes greater than zero implies case (2). Data consists of the
x-coordinate time series of 1000 points observed from X and
Y with sampling interval ∆t = 0.05.

For a Lorenz attractor driven by the output of another
Lorenz attractor, GS is relatively easy to achieve, even
for non-identical systems as above. If the driving system
sends a signal cx to the response system for c sufficiently
large (as in the above paragraph), the system enters GS.
Also, the signal c(x+ z) used in the same way causes GS
for any c > 0.
The second example of generalized synchrony occurs

for the coupling X → Y where X is a Rössler attractor
driving a Lorenz attractor Y , with the standard parame-
ters σ = 10, ρ = 28, β = 8/3. The Rössler equations [28]
are

ẋ = −y − z

ẏ = x+ ay (4)

ż = b+ (x− c)z

and we will use the parameter settings a = 0.1, b = 0.1,
and c = 14. As before, the Lorenz attractor Y will be
driven by adding a signal from the X system to the y
variable of Y . Fig. 5(b) shows that relatively small cou-
plings from the x or y variable of X to the y variable of
Y causes generalized synchrony.

V. DISCUSSION

The tests proposed here are designed to learn the cou-
pling characteristics of a pair of time series, produced
simultaneously by two different deterministic processes.
Our goal is to exploit the fact of asymmetry between the
dual reconstructions as simply and robustly as possible,
in order to tease conclusions from time series that may be
short and perturbed by observational noise. These tests
may be applied to univariate time series (or multivari-
ate time series) measured from two or more processes, as
long as the state space reconstructions afford a one-to-
one correspondence to the original systems.
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Among the innovations of our methods are the reduc-
tion of the information of distances between points by
treating them ordinally, in order to make the results ro-
bust to measurement noise. This also allows us to apply
the theory of order statistics in the DetC test to deter-
mine dependence of time series, and to retrieve statis-
tical conclusions by assigning confidence intervals. The
DirC test exploits the asymmetry of paired Takens delay
coordinate reconstructions in order to distinguish unidi-
rectional, bidirections, and latent coupling. Our goal in
this article is to deploy these innovations in the simplest
possible way so that they may succeed with minimal data
requirements.

These tests will gradually fail in general for stochastic
systems, due to the degradation of the delay coordinate
embedding that is foundational for this approach. Other
methods more suited toward working under stochastic
assumptions will work better in general, although where
the trade-off occurs will be dependent on the details of
the situation.

A key requirement for faithfulness of the delay coor-

dinate embedding is genericity of the dynamics and ob-
servations. This includes both the internal dynamics of
X and Y , and in addition, the connections (if any) be-
tween the two systems. We can expect this genericity
to exist normally in natural systems, in the absence of a
particular structural reason that defeats the hypotheses
of Takens’ theorem.
The existence of generalized synchrony presents an in-

teresting complication to the problem of distinguishing
coupling direction from time series. On the one hand,
when couplings exist in both directions, i.e. X ↔ Y , un-
der generic conditions, the delay coordinate embedding
from either X or Y will uniquely reconstruct a corre-
sponding state from the other that will occur simulta-
neously, so that a one-to-one correspondence exists be-
tween reconstructed states. This is also the definition of
generalized synchrony, but as demonstrated here, GS can
occur solely from unidirectional coupling X → Y . There-
fore evidence such as the DirC results in Fig. 6 cannot
distinguish between these two cases, and it is unlikely
that any method based on time series alone can do so, in
the deterministic nonlinear case.
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