Numerical Methods
with Matlab
Tim Sauer

Contents

CHAPTER 0. Fundamentals ... 1
 0.1 Evaluating a polynomial 1
 0.2 Binary numbers ... 5
 0.2.1 Decimal to binary...................................... 5
 0.2.2 Binary to decimal 6
 0.3 Floating point representation of real numbers 7
 0.3.1 Double precision floating point representation 7
 0.3.2 Machine representation 11
 0.3.3 Addition of floating point numbers 12
 0.4 Loss of significance 14
 0.5 Review of calculus 18

A Appendix: Matrix Algebra 21
 A.1 Matrix fundamentals 21
 A.2 Block multiplication 22
 A.3 Eigenvalues and eigenvectors 23
 A.4 Symmetric matrices 24

B Appendix: Introduction to Matlab 26
 B.1 Starting Matlab ... 26
 B.2 Matlab graphics ... 27
 B.3 Programming in Matlab 29
 B.4 Flow control .. 29
 B.5 Functions .. 30
 B.6 Matrix operations ... 31

CHAPTER 1. Solving Equations 33
 1.1 What is an equation? 33
 1.1.1 What is a solution? 33
 1.1.2 What is an equation, revisited 34
 1.1.3 The Bisection Method 35
 1.1.4 How accurate and how fast? 38
 1.1.5 The balloon problem 39
 1.2 Fixed point iteration 41
 1.2.1 Fixed points of a function 42
 1.2.2 Geometry of Fixed Point Iteration 44
 1.2.3 Linear Convergence of Fixed Point Iteration 45
 1.2.4 Stopping criteria 51
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.5</td>
<td>Basins of attraction for Fixed Point Iteration</td>
<td>52</td>
</tr>
<tr>
<td>1.3</td>
<td>Errors and Magnification</td>
<td>55</td>
</tr>
<tr>
<td>1.3.1</td>
<td>The limits of accuracy</td>
<td>55</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Error magnification</td>
<td>60</td>
</tr>
<tr>
<td>1.4</td>
<td>Newton’s Method</td>
<td>63</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Quadratic convergence of Newton’s method</td>
<td>65</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Linear convergence of Newton’s method</td>
<td>67</td>
</tr>
<tr>
<td>1.5</td>
<td>Root-finding without derivatives</td>
<td>73</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Secant method and variants</td>
<td>74</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Brent’s Method</td>
<td>77</td>
</tr>
<tr>
<td>2.1</td>
<td>Gauss elimination</td>
<td>82</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Operation counts</td>
<td>83</td>
</tr>
<tr>
<td>2.2</td>
<td>The LU factorization</td>
<td>88</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Backsolving with the LU factorization</td>
<td>91</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Complexity of the LU factorization</td>
<td>93</td>
</tr>
<tr>
<td>2.3</td>
<td>Sources of error</td>
<td>95</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Error magnification and condition number</td>
<td>96</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Swamping</td>
<td>99</td>
</tr>
<tr>
<td>2.4</td>
<td>Partial pivoting and the PA=LU factorization</td>
<td>102</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Permutation matrices</td>
<td>104</td>
</tr>
<tr>
<td>2.4.2</td>
<td>$PA = LU$ factorization</td>
<td>105</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Matlab commands for linear systems</td>
<td>108</td>
</tr>
<tr>
<td>2.5</td>
<td>Iterative methods</td>
<td>110</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Jacobi method</td>
<td>110</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Gauss-Seidel Method and SOR</td>
<td>113</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Convergence of iterative methods</td>
<td>114</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Sparse matrix computations</td>
<td>116</td>
</tr>
<tr>
<td>2.6</td>
<td>Conjugate gradient method</td>
<td>120</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Positive definite matrices</td>
<td>120</td>
</tr>
<tr>
<td>2.6.2</td>
<td>The conjugate gradient iteration</td>
<td>121</td>
</tr>
<tr>
<td>2.7</td>
<td>Nonlinear systems of equations</td>
<td>125</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Multivariable Newton’s method</td>
<td>125</td>
</tr>
<tr>
<td>3.1</td>
<td>Data and interpolating functions</td>
<td>131</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Lagrange interpolation</td>
<td>132</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Newton’s divided differences</td>
<td>134</td>
</tr>
<tr>
<td>3.1.3</td>
<td>How many degree d polynomials pass through n points?</td>
<td>137</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Code for interpolation</td>
<td>138</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Representing functions by approximating polynomials</td>
<td>140</td>
</tr>
<tr>
<td>3.2</td>
<td>Interpolation error</td>
<td>144</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Interpolation error formula</td>
<td>144</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Proof of Newton form and error formula</td>
<td>146</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Runge phenomenon</td>
<td>148</td>
</tr>
<tr>
<td>Chapter</td>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>3.3</td>
<td>3.3.1</td>
<td>Chebyshev’s Theorem</td>
</tr>
<tr>
<td>3.3</td>
<td>3.3.2</td>
<td>Chebyshev polynomials.</td>
</tr>
<tr>
<td>3.3</td>
<td>3.3.3</td>
<td>Change of interval</td>
</tr>
<tr>
<td>3.4</td>
<td>3.4.1</td>
<td>Cubic splines</td>
</tr>
<tr>
<td>3.4</td>
<td>3.4.2</td>
<td>Calculation of the cubic spline.</td>
</tr>
<tr>
<td>3.4</td>
<td>3.4.3</td>
<td>Endpoint conditions</td>
</tr>
<tr>
<td>3.4</td>
<td>3.4.4</td>
<td>Bezier splines</td>
</tr>
<tr>
<td>4</td>
<td>4.1</td>
<td>Inconsistent systems of equations.</td>
</tr>
<tr>
<td>4</td>
<td>4.2</td>
<td>Modeling data by least squares.</td>
</tr>
<tr>
<td>4</td>
<td>4.3</td>
<td>A survey of models.</td>
</tr>
<tr>
<td>4.3</td>
<td>4.3.1</td>
<td>Periodic data</td>
</tr>
<tr>
<td>4.3</td>
<td>4.3.2</td>
<td>Linearizing the model.</td>
</tr>
<tr>
<td>5</td>
<td>5.1</td>
<td>Numerical differentiation</td>
</tr>
<tr>
<td>5</td>
<td>5.1.1</td>
<td>Difference formulas</td>
</tr>
<tr>
<td>5</td>
<td>5.1.2</td>
<td>Rounding error</td>
</tr>
<tr>
<td>5</td>
<td>5.1.3</td>
<td>Extrapolation</td>
</tr>
<tr>
<td>5</td>
<td>5.1.4</td>
<td>Symbolic differentiation and integration.</td>
</tr>
<tr>
<td>5</td>
<td>5.2</td>
<td>Newton-Cotes formulas for numerical integration</td>
</tr>
<tr>
<td>5</td>
<td>5.2.1</td>
<td>Three simple integrals for Newton-Cotes Formulas.</td>
</tr>
<tr>
<td>5</td>
<td>5.2.2</td>
<td>Trapezoid rule</td>
</tr>
<tr>
<td>5</td>
<td>5.2.3</td>
<td>Simpson’s Rule</td>
</tr>
<tr>
<td>5</td>
<td>5.2.4</td>
<td>Composite Newton-Cotes Formulas</td>
</tr>
<tr>
<td>5</td>
<td>5.2.5</td>
<td>Open Newton-Cotes methods</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>Romberg integration</td>
</tr>
<tr>
<td>5</td>
<td>5.4</td>
<td>Adaptive quadrature</td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>Gaussian quadrature</td>
</tr>
<tr>
<td>6</td>
<td>6.1</td>
<td>Initial value problems</td>
</tr>
<tr>
<td>6</td>
<td>6.1.1</td>
<td>Euler’s method.</td>
</tr>
<tr>
<td>6</td>
<td>6.1.2</td>
<td>Existence, uniqueness, and continuity for solutions.</td>
</tr>
<tr>
<td>6</td>
<td>6.1.3</td>
<td>First-order linear equations</td>
</tr>
<tr>
<td>6.2</td>
<td>Analysis of IVP solvers.</td>
<td>240</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Local and global truncation error</td>
<td>241</td>
</tr>
<tr>
<td>6.2.2</td>
<td>The trapezoid method</td>
<td>245</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Taylor methods</td>
<td>248</td>
</tr>
<tr>
<td>6.3</td>
<td>Systems of ordinary differential equations.</td>
<td>250</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Higher order equations</td>
<td>252</td>
</tr>
<tr>
<td>6.3.2</td>
<td>The pendulum</td>
<td>253</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Orbital mechanics</td>
<td>256</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>6.4</td>
<td>Runge-Kutta methods and applications</td>
<td>261</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Classical examples</td>
<td>263</td>
</tr>
<tr>
<td>6.5</td>
<td>Variable step-size methods</td>
<td>267</td>
</tr>
<tr>
<td>6.6</td>
<td>Implicit methods and stiff equations</td>
<td>274</td>
</tr>
<tr>
<td>6.7</td>
<td>Multistep methods</td>
<td>278</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Generating multistep methods</td>
<td>280</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Explicit multistep methods</td>
<td>281</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Implicit multistep methods</td>
<td>285</td>
</tr>
<tr>
<td>7.1</td>
<td>Solutions of boundary value problems</td>
<td>291</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Shooting method</td>
<td>294</td>
</tr>
<tr>
<td>7.2</td>
<td>Finite difference methods</td>
<td>296</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Derivative formulas</td>
<td>296</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Nonlinear boundary value problems</td>
<td>299</td>
</tr>
<tr>
<td>7.3</td>
<td>Collocation and the Finite Element Method</td>
<td>303</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Collocation</td>
<td>303</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Finite elements and the Galerkin method</td>
<td>305</td>
</tr>
<tr>
<td>8.1</td>
<td>Parabolic equations</td>
<td>311</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Forward difference method</td>
<td>312</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Stability analysis of forward difference method</td>
<td>315</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Backward difference method</td>
<td>317</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Crank-Nicolson method</td>
<td>320</td>
</tr>
<tr>
<td>8.2</td>
<td>Hyperbolic equations</td>
<td>325</td>
</tr>
<tr>
<td>8.3</td>
<td>Elliptic equations</td>
<td>328</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Finite difference methods for elliptic equations</td>
<td>329</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Finite element method for elliptic equations</td>
<td>333</td>
</tr>
<tr>
<td>9.1</td>
<td>Random numbers</td>
<td>341</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Pseudo-random numbers</td>
<td>342</td>
</tr>
<tr>
<td>9.2</td>
<td>Monte-Carlo simulation</td>
<td>348</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Power laws for Monte Carlo estimation</td>
<td>348</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Quasi-random numbers</td>
<td>350</td>
</tr>
<tr>
<td>9.3</td>
<td>Discrete and continuous Brownian motion</td>
<td>355</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Random walks</td>
<td>355</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Continuous Brownian motion</td>
<td>357</td>
</tr>
<tr>
<td>9.4</td>
<td>Stochastic differential equations</td>
<td>359</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Adding noise to ODEs</td>
<td>360</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Numerical methods for SDEs</td>
<td>363</td>
</tr>
</tbody>
</table>
CONTENTS

CHAPTER 10. Trigonometric Interpolation and the FFT

10.1 The Fourier Transform .. 371
 10.1.1 Complex arithmetic 371
 10.1.2 Discrete Fourier Transform 374
 10.1.3 The Fast Fourier Transform 377
10.2 Trigonometric interpolation 380
 10.2.1 The DFT Interpolation Theorem 380
 10.2.2 Orthogonality and interpolation 385
 10.2.3 Least squares fitting with trigonometric functions 387
 10.2.4 Sound, noise, and filtering 392

CHAPTER 11. Compression

11.1 The Discrete Cosine Transform 397
 11.1.1 One-dimensional DCT 397
11.2 Two-dimensional DCT and image compression 401
 11.2.1 The two-dimensional discrete cosine transform ... 401
 11.2.2 Image compression 405
 11.2.3 Quantization of image transforms 408
11.3 Modified DCT and sound compression 413
 11.3.1 Modified Discrete Cosine Transform 413
 11.3.2 Quantization 418
 11.3.3 Fast Cosine Transforms 422

CHAPTER 12. Eigenvalues and Singular Values

12.1 Power iteration methods 429
 12.1.1 Power iteration 430
 12.1.2 Convergence of power iteration 431
 12.1.3 Inverse power iteration 432
12.2 QR algorithm ... 434
 12.2.1 Simultaneous iteration 434
 12.2.2 Real Schur form and QR 437
 12.2.3 Householder reflectors 439
 12.2.4 Upper Hessenberg form 443
12.3 Singular value decomposition 449
 12.3.1 Finding the SVD in general 452
 12.3.2 Special case: symmetric matrices 454
12.4 Applications of the SVD 455
 12.4.1 Properties of the SVD 455
 12.4.2 Dimension reduction 457
 12.4.3 Compression 458
 12.4.4 Calculating the SVD 459

CHAPTER 13. Optimization

13.1 Unconstrained optimization without derivatives 463
 13.1.1 Golden section search 464
 13.1.2 Successive parabolic interpolation 467
13.1.3 Nelder-Mead search. 469
13.2 Unconstrained optimization with derivatives. 472
 13.2.1 Newton’s method. 472
 13.2.2 Steepest descent. 474
 13.2.3 Conjugate gradient search. 475
 13.2.4 Nonlinear least squares. 476