On the Normal Structure Coefficient and the Bounded Sequence Coefficient

Teck-Cheong Lim

Your use of the JSTOR database indicates your acceptance of JSTOR’s Terms and Conditions of Use. A copy of JSTOR’s Terms and Conditions of Use is available at http://www.jstor.org/about/terms.html, by contacting JSTOR at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part of a JSTOR transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Proceedings of the American Mathematical Society is published by American Mathematical Society. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ams.html.

Proceedings of the American Mathematical Society
©1983 American Mathematical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2000 JSTOR

http://www.jstor.org/
ON THE NORMAL STRUCTURE COEFFICIENT AND THE BOUNDED SEQUENCE COEFFICIENT

TECK-CHEONG LIM

Abstract. The two notions of normal structure coefficient and bounded sequence coefficient introduced by Bynum are shown to be the same. A lower bound for the normal structure coefficient in L^p, $p > 2$, is also given.

Let X be a Banach space and C a closed convex bounded subset of X. For each x in C, let $R(x, C) = \sup \{ \| x - y \| : y \in C \}$ and let $R(C)$ denote the Chebyshev radius of C [2, p. 178]:

$$R(C) = \inf \{ R(x, C) : x \in C \}.$$

Let $D(C)$ denote the diameter of C, $D(C) = \sup \{ \| x - y \| : x, y \in C \}$.

For a bounded sequence $\{ x_n \}$ in X, the asymptotic diameter $A(\{ x_n \})$ of $\{ x_n \}$ is defined to be $\lim_{n \to \infty} \sup \{ \| x_k - x_m \| : m \geq n, k \geq n \}$.

In [1], Bynum introduced the following two coefficients of X, called the normal structure coefficient and the bounded sequence coefficient respectively:

$$N(X) = \inf \{ \frac{D(C)}{R(C)} : C \text{ closed convex bounded nonempty subsets of } X \text{ with } |C| > 1 \},$$

$$BS(X) = \sup \left\{ M : \text{for every bounded sequence } \{ x_n \} \text{ in } X, \text{ there exists } y \in \overline{Co}(x_n) \text{ such that } M \lim_{n \to \infty} \sup \| x_n - y \| = A(\{ x_n \}) \right\}.$$
In [1], Bynum mentioned that the two coefficients \(N(X) \) and \(BS(X) \) are equal in a separable Banach space \(X \). In this note, we shall show that the three coefficients are equal in any Banach space \(X \).

Theorem 1. For a Banach space \(X \), \(N(X) = BS(X) = A(X) \).

Proof. It follows readily from the definition that \(BS(X) = A(X) \). Indeed, we may assume that the sequences in the definition of \(BS(X) \) are nonconvergent. Clearly \(BS(X) \leq A(X) \). On the other hand for each \(\lambda > 1 \), \(A(X)/\lambda \) belongs to the defining set of \(BS(X) \) and thus \(BS(X) \geq A(X) \). Bynum [1] proved that \(N(X) \leq BS(X) \). To prove that \(BS(X) \leq N(X) \), it suffices to show that for any bounded convex nonempty set \(C \) with more than one point, there is a separable closed convex subset \(C_1 \) such that \(R(C_1) = R(C) \). Indeed, if \(\{ x_n \} \) is a dense sequence in \(C_1 \) and \(M \) is a number in the defining set of \(BS(X) \), then

\[
M \leq A(\{ x_n \}) \leq \limsup \| x_n - y \| = \frac{D(C_1)}{R(y, C_1)} \leq \frac{D(C_1)}{R(C_1)} \leq \frac{D(C)}{R(C)}.
\]

To construct \(C_1 \), we start out with a sequence of points \(\{ z_n \} \) in \(C \) such that \(\lim_{n \to -\infty} R(z_n, C) = R(C) \). Let \(U_1 = \text{Co}(\{ z_n \}) \). Let \(V_1 = \{ x \in U_1 : R(x, U_1) < R(C) \} \) and let \(V_1 \) be a countable dense subset of \(V_1 \). For each \(x \) in \(V_1 \), let \(D_x \) be a sequence of points in \(C \) such that \(R(x, D_x) \geq R(C) \). Let \(X_1 \) be the countable subset \(\bigcup \{ D_x : x \in V_1 \} \) and \(U_2 = \text{Co}(U_1 \cup X_1) \). We define similarly \(V_2 \), \(W_2 \) and \(X_2 \) from \(U_2 \) and continue this process to obtain an increasing sequence of convex sets \(U_1 \subset U_2 \subset U_3 \subset \cdots \subset U_n \subset \cdots \). Let \(C_1 = \text{Co}(\bigcup U_n) \). \(C_1 \) is separable. Since \(R(z_n, C_1) \leq R(z_n, C) \) and \(\lim_{n \to -\infty} R(z_n, C) = R(C) \), we have \(R(C_1) \leq R(C) \). From the way \(U_n \) are constructed, \(R(x, U_{n+1}) \geq R(C) \) for each \(x \in U_n \). It follows that \(R(C_1) \geq R(C) \) and the proof is complete.

For \(0 < \mu < \frac{1}{2} \) and \(p > 2 \), denote by \(x(\mu) \) the unique solution of the equation

\[
\lambda x^{\rho-1} - \mu - (\lambda x - \mu)^{\rho-1} = 0
\]

in the interval \(\mu/\lambda \leq x \leq 1 \). Define \(g(\mu) \), \(0 \leq \mu \leq 1 \), by

\[
g(\mu) = \frac{\lambda \mu^{-1} + x(\lambda \wedge \mu)^{\rho-1}}{(1 + x(\lambda \wedge \mu)^{\rho-1})^{\rho-1}}
\]

where \(\lambda = 1 - \mu \). We proved in [4] the following inequality in \(L^p \) (\(p > 2 \)):

\[
\| \lambda x + \mu y \|_p + g(\mu) \| x - y \|_p \leq \lambda \| x \|_p + \mu \| x \|_p
\]

and that

\[
\sup_{0 < \mu < 1} \frac{g(\mu)}{\mu} = \frac{1 + \alpha^{\rho-1}}{(1 + \alpha)^{\rho-1}},
\]

where \(\alpha \) is the unique solution of

\[
(p - 2)x^{\rho-1} + (p - 1)x^{\rho-2} - 1 = 0
\]

in the interval \(0 \leq x \leq 1 \).
THEOREM 2. For $X = L^p$, $p > 2$,

$$N(X) \geqslant \left(1 + \frac{1 + \alpha^{p-1}}{(1 + \alpha)^{p-1}}\right)^{1/p}.$$

PROOF. For a closed convex bounded set C in X, let R and D be the Chebyshev radius and the diameter of C respectively. Let z be the Chebyshev center of C. For x, y in C and $0 < \mu \leqslant 1$, we have

$$\|\lambda z + \mu y - x\|_p + g(\mu)\|z - y\|_p \leqslant \lambda \|z - x\|_p + \mu \|y - x\|_p.$$

Taking sup over x in C and noting that $R \leqslant \sup\{\|\lambda z + \mu y - x\|: x \in C\}$, we obtain

$$R^p + g(\mu)\|z - y\|_p \leqslant \lambda R^p + \mu \sup\{\|y - x\|_p: x \in C\}.$$

It follows, after taking sup over y in C, that $(\mu + g(\mu))R^p \leqslant \mu D^p$ and hence

$$\frac{D}{R} \geqslant \left(1 + \sup_{0 < \mu \leqslant 1} \frac{g(\mu)}{\mu}\right)^{1/p} = \left(1 + \frac{1 + \alpha^{p-1}}{(1 + \alpha)^{p-1}}\right)^{1/p}.$$

Therefore

$$N(X) \geqslant \left(1 + \frac{1 + \alpha^{p-1}}{(1 + \alpha)^{p-1}}\right)^{1/p}. \quad \square$$

REMARK 1. For $p = 3$ and 4, we have $\alpha = \sqrt{2} - 1$ and $1/2$ and hence

$$\left(1 + \frac{1 + \alpha^{p-1}}{(1 + \alpha)^{p-1}}\right)^{1/p} = \left(3 - \sqrt{2}\right)^{1/3} \text{ and } (4/3)^{1/4}$$

respectively.

REFERENCES

DEPARTMENT OF MATHEMATICS, GEORGE MASON UNIVERSITY, 4400 UNIVERSITY DRIVE, FAIRFAX, VIRGINIA 22030