Relative Countably Compact

Let X be a topological space and M a subset of X. M is called relative countably compact if every infinite subset of M has a limit point in X.

The following example shows that if M is relative countably compact, then \overline{M}, the closure of M, need not be countably compact (in its relative topology).

Let ω be the first countable (infinite) ordinal, and Ω the first uncountable ordinal. Let $X = [0, \omega) \times [0, \Omega) - \{(\omega, \Omega)\}$ and $M = \{[0, \omega) \times [0, \Omega)\}$. Any infinite subset of M contains a countably infinite subset S which is contained in $T = [0, \omega) \times [0, \nu]$ for some countable ordinal ν. Since T is compact, it contains a limit point of S. This shows that M is relative countably compact, and in fact, countably compact.

But the subset $[0, \omega) \times \{\Omega\}$ of $\overline{M} = X$ does not have any limit point in $\overline{M} = X$.

Another example (in a non-T_1 space): Let X be any infinite set and $x_0 \in X$. Let the open sets be empty set and any set containing x_0. Let $M = \{x_0\}$. M is relative countably compact. $\overline{M} = X$ and X is not countably compact since X is an infinite set that does not have limit point.