Proof of Descartes’s Rule of Signs

Teck-Cheong Lim
Department of Mathematical Sciences
George Mason University
4400, University Drive
Fairfax, VA 22030
U.S.A.
e-mail address: tlim@gmu.edu

The following proof, based on a paper by Wang, uses some facts from calculus.

Definition 1 Let \(a \) be a real zero of a polynomial \(P(x) \). We say that the graph of \(P \) crosses the \(x \)-axis at \(a \) if there is an \(\epsilon > 0 \) such that \(P \) assumes different signs on \((a-\epsilon,a) \) and \((a,a+\epsilon) \); i.e. either \(P(x) > 0 \) on \((a-\epsilon,a) \) and \(P(x) < 0 \) on \((a,a+\epsilon) \), or \(P(x) < 0 \) on \((a-\epsilon,a) \) and \(P(x) > 0 \) on \((a,a+\epsilon) \).

Fact 1 Let \(a \) be a real zero of a polynomial \(P(x) \). The graph of \(P \) crosses the \(x \)-axis at \(a \) if and only if the multiplicity of \(a \) is odd.

Proof. Suppose that the multiplicity of \(a \) is \(m \), \(m \) being an odd positive integer. Then \(P(x) = (x-a)^m Q(x) \), where \(Q \) is a polynomial with \(Q(a) \neq 0 \). Assume that \(Q(a) > 0 \). By continuity of \(Q \), there exists \(\epsilon > 0 \) such that \(Q(x) > 0 \) for all \(x \in (a-\epsilon,a+\epsilon) \). It follows that \(P(x) < 0 \) on \((a-\epsilon,a) \) and \(P(x) > 0 \) on \((a,a+\epsilon) \). Similarly if \(Q(a) < 0 \), then \(P(x) > 0 \) on \((a-\epsilon,a) \) and \(P(x) < 0 \) on \((a,a+\epsilon) \) for some \(\epsilon > 0 \).

The same argument shows that if \(m \) is an even positive integer, then \(P \) assumes the same sign on \((a-\epsilon,a) \) and \((a,a+\epsilon) \) for some \(\epsilon > 0 \), proving that \(P \) does not cross the \(x \)-axis at \(a \). Q.E.D.

Fact 2 A polynomial of degree \(n, n \geq 1 \) can have at most \(n \) real zeros, counting multiplicities.

Fact 3 Let \(P(x) = a_0 + a_1 x + \cdots + a_n x^n, n \geq 1, a_n \neq 0 \). Then \(\lim_{x \to \infty} P(x) = \infty \) if \(a_n > 0 \), and \(\lim_{x \to -\infty} P(x) = -\infty \) if \(a_n < 0 \).

Proposition 1 Let \(P(x) = a_0 x^{b_0} + \cdots + a_n x^{b_n}, \) where \(a_i, i = 0, \cdots, n \) are nonzero real numbers, and \(0 \leq b_0 < b_1 < \cdots < b_n \) are integers. Then \(P(x) \) has an even number of positive zeros, counting multiplicities, if and only if \(a_0 a_n > 0 \).
Proof.
Since P has the same number of positive zeros as $a_0 + a_1 x^{c_1} + \cdots + a_n x^{c_n}$, where $c_i = b_i - b_0$, we may assume that $b_0 = 0$. $a_0 a_n > 0$ implies that $P(0) = a_0$ and $\lim_{x \to \infty} P(x)$ have the same sign. It follows that P can cross the positive x-axis an even number of times, each time corresponding to a zero of odd multiplicity by Fact 1. P may have other positive zeros of even multiplicity. Therefore P has an even number of positive zeros. On the other hand, if $a_0 a_n < 0$, the same argument proves that P has an odd number of positive zeros. Q.E.D.

Fact 4 Suppose a is a real zero of polynomial $P(x)$ of multiplicity m, then a is a zero of $P'(x)$, the derivative of P, of multiplicity $m - 1$ if $m \geq 2$; not a zero of P' if $m = 1$.

Proposition 2 Let $z(P), z(P')$ denote the number of positive zeros of P and P' respectively. Then

$$z(P') \geq z(P) - 1$$

Proof.
Suppose $z_0 < z_1 < \cdots < z_k$ are the positive zeros of P of multiplicities m_0, \cdots, m_k respectively. By Rolle’s theorem P' has at least one zero strictly between each consecutive z_i’s. It follows from Fact 4 that

$$z(P') \geq (m_0 - 1) + \cdots + (m_k - 1) + k = z(P) - 1$$

Notation 1 Let $P(x) = a_0 x^{b_0} + \cdots + a_n x^{b_n}$, where $a_i, i = 0, \ldots, n$ are nonzero real numbers, and $0 \leq b_0 < b_1 < \cdots < b_n$ are integers. $v(P)$ will denote the number of sign changes in the sequence a_0, \ldots, a_n.

Theorem 1 (Descartes’s Rule of Signs) Let $P(x) = a_0 x^{b_0} + \cdots + a_n x^{b_n}$, where $a_i, i = 0, \ldots, n$ are nonzero real numbers, and $0 \leq b_0 < b_1 < \cdots < b_n$ are integers. The number of positive zeros of P, counting multiplicities, is either equal to $v(P)$ or less than that by an even number.

Proof.
The theorem is evidently true for $b_n = 1$. Assume that it is true for polynomials of degree less than b_n. Consider two cases:

Case 1: $a_0 a_1 > 0$. Then $v(P) = v(P')$. By induction hypothesis $z(P') \leq v(P')$ and $z(P') = v(P') \mod 2$. By Proposition 1, $z(P) = z(P') \mod 2$. So $z(P) = v(P) \mod 2$. By Proposition 2,

$$z(P) \leq z(P') + 1 \leq v(P') + 1 = v(P) + 1$$

This together with $z(P) = v(P) \mod 2$ yields $z(P) \leq v(P)$ and the conclusion of the theorem.

Case 2: $a_0 a_1 < 0$. Then $v(P) = v(P') + 1$. By induction hypothesis $z(P') \leq v(P')$ and $z(P') = v(P') \mod 2$. By Proposition 1, $z(P) \neq z(P') \mod 2$, which together with $v(P) \neq v(P') \mod 2$ and $v(P') = z(P') \mod 2$ yields $z(P) = v(P) \mod 2$. By Proposition 2,

$$z(P) \leq z(P') + 1 \leq v(P') + 1 = v(P)$$
This completes the proof. Q.E.D.

Corollary 1 Let $P(x) = a_0x^{b_0} + \cdots + a_nx^{b_n}$, where $a_i, i = 0, \ldots, n$ are nonzero real numbers, and $0 \leq b_0 < b_1 < \cdots < b_n$ are integers. The number of negative zeros of P, counting multiplicities, is either equal to $v(P^*)$ or less than that by an even number, where $P^*(x) = P(-x)$.

Proof.
a is a negative zero of $P(x)$ with multiplicity m if and only if $-a$ is a positive zero of $P(-x)$ of the same multiplicity.

References