Math 302 Hw3 Solutions

1. Inside a square $ABDE$, take a point C so that CDE is an isosceles triangle with angles 15° at D and E. What kind of triangle is ABC?

Sol.

Let F be a point in the square such that $\triangle CDE \cong \triangle FBD$.

Then $CD = DF$

$m_{\angle CDF} = 90^\circ - 15^\circ - 15^\circ = 60^\circ$

$\Rightarrow \triangle CDF$ is equilateral. Therefore $CF = FD = FB \Rightarrow \triangle CFB$ is isosceles. $m_{\angle DFB} = 180^\circ - 15^\circ - 15^\circ = 150^\circ$

$m_{\angle CFD} = 60^\circ$

$\therefore m_{\angle CFB} = 360^\circ - 150^\circ - 60^\circ = 150^\circ$

$\therefore m_{\angle CBF} = \frac{1}{2} \left(180^\circ - 150^\circ\right) = 15^\circ$

$\Rightarrow \therefore m_{\angle ABC} = 90^\circ - 15^\circ - 15^\circ = 60^\circ$.

Similarly $m_{\angle BAC} = 60^\circ$

So $\triangle ABC$ is an equilateral triangle.

2. Prove that any triangle having two equal medians is isosceles.

Sol. Suppose B', C' are midpoints of $\overline{AC}, \overline{AB}$ respectively.

And $d = BB' = CC'$. Let D be the two medians intersect at D. By theorem, $BD = \frac{2}{3}d$, $DB' = \frac{1}{3}d$

$CD = \frac{1}{3}d$, $DC' = \frac{1}{3}d$.

$\therefore \triangle C'DB \cong \triangle B'DC$ (SAS)

3. Let the three medians be $\overline{AA'}, \overline{BB'}, \overline{CC'}$, intersecting at P. By thm,

$BP = \frac{2}{3} BB'$, $CP = \frac{2}{3} CC'$, $AP = \frac{2}{3} AA'$.

$B'C' = \frac{1}{2} BC$, $A'C' = \frac{1}{2} AC$, $A'B' = \frac{1}{2} AB$.

By triangle inequality, one has

$BB' \leq B'C' + C'B = \frac{1}{2} BC + \frac{1}{2} AB$

$CC' \leq C'B' + B'C' = \frac{1}{2} AC + \frac{1}{2} BC$

$AA' \leq AB' + B'A' = \frac{1}{2} AC + \frac{1}{2} AB$.

Adding up, we get

$BB' + CC' + AA' \leq AC + AB + BC = P$

Also

$AB \leq AP + PB = \frac{2}{3} AA' + \frac{2}{3} BB'$

$AC \leq AP + PC = \frac{2}{3} AA' + \frac{2}{3} CC'$

$BC \leq BP + PC = \frac{2}{3} BB' + \frac{2}{3} CC'$

Adding up, we get

$AB + BC + AC \leq \frac{4}{3} AA' + \frac{4}{3} BB' + \frac{4}{3} CC'$

$\therefore \frac{3}{4} (AB + BC + AC) \leq AA' + BB' + CC'$

4. Prove that if P is a point on the circumcircle of a triangle, then the feet of perpendiculars from P to the three sides are collinear.

Sol.

Let D, E, F be the feet of perpendiculars from P to $\overline{AB}, \overline{BC}, \overline{AC}$ respectively.

To prove that DE, EF are collinear, we need to show $m\angle BPD = m\angle FEC$.

Since $ABPC$ is cyclic,

$m\angle BPC + m\angle A = 180^\circ$.
Since \(\angle D \) and \(\angle E \) in \(ADPF \) are \(90^\circ \), \(ADPF \) is cyclic, so
\[
\angle DPF + \angle A = 180^\circ
\]
\[
: \quad \angle BPC = \angle DPF.
\]
But \(\angle BPC = \angle BPF + \angle FPC \) and
\[
\angle DPF = \angle BPF + \angle DPB,
\]
so \(\angle FPC = \angle DPB \).

Now \(BEPP \) cyclic \(\Rightarrow \angle DPB = \angle DEB \) (they subtend same arc \(\overarc{BD} \))
\(EFPC \) cyclic \(\Rightarrow \angle FPC = \angle FEC \) ("" ""
\(\overarc{PC} \)).

\[
: \quad \angle DEB = \angle FEC
\]

[Note: \(EFCD \) is cyclic b/c \(E, F, P, C \) are all equidistant from the midpoint \(\overarc{PC} \).]

5. Prove the converse of Problem 4, i.e., if the feet of perpendiculars from \(P \) to the three sides are collinear, then \(P \) must be on the circumcircle of the triangle.

Sols:
If \(D, E, F \) are collinear, then
\[
\angle BDE = \angle FEC.
\]
Since \(EBDP \) is cyclic,
\[
\angle BDP = \angle BDE.
\]
Since \(EFPC \) is cyclic
\[
\angle FPC = \angle FEC.
\]
So \(\angle BPD = \angle FPC \)
\[
\Rightarrow \angle DPF = \angle BPC
\]
Since \(ADPF \) is cyclic,
\[
\angle DPF + \angle A = 180^\circ
\]
\[
: \quad \angle BPC + \angle A = 180^\circ
\]
\[
\Rightarrow \quad ABPC \text{ is cyclic } \Rightarrow P \text{ is on the circumcircle of } \triangle ABC.