Section 1. **Multiple Choice Problems** (each problem is 1 point)

1. How many four-letter words are possible if adjacent letters must be different? e.g. FOUR, FOUF, BOBO are allowed, but AOOF, CCOU, DDDU are not.
 \[26 \cdot 25 \cdot 25 \cdot 25 = 406250\]

2. How many three-digit numbers are possible if the first digit cannot be 0? e.g. 100, 303, 321, 333 are allowed, but 012, 000, 011 are not.
 \[900\]

3. How many ways can 4 students be selected from a class of 20 students to clean the floor?
 \[4845\]

4. Roses come in 10 different colors. How many different bunches of 5 roses can be formed?
 \[2002\]

5. From a class of 36 students, 6 are to be selected to clean the floor, 3 to clean the board, and 7 to paint the wall. How many ways can this be done?
 \[\frac{36!}{6!3!7!20!}\]

6. There are five sets \(A, B, C, D, E\) each with 20 elements; intersection of any two of them has 7 elements; intersection of any three of them has 4 elements; intersection of any four of them has 3 elements, and \(A \cap B \cap C \cap D \cap E\) has 2 element. How many elements does \(A \cup B \cup C \cup D \cup E\) have?
 \[57\]

7. There are 251 pigeons in 48 holes. By the strong form of the Pigeon Hole Principle one of the holes must have at least \[\text{........} \text{ pigeons}\]
 \[6\]

8. Let \(A = \{1, 2, 3, 4, 5, 6, 7\}\). Define a relation \(\equiv\) on \(A\) as follows: \(a \equiv b\) if and only if \(a - b\) is divisible by 3. (A number \(n\) is divisible by 3 if and only if \(n = 3m\) for some integer \(m\). e.g. \(-9, 15\) are divisible by 3.) The equivalence classes induced by \(\equiv\) on \(A\) are:
 \[\{1, 4, 7\}, \{2, 5\}, \{3, 6\}\]
9. Let \(A = \{1, 2, 3, 4\} \). Let \(R = \{(1, 1), (2, 2), (3, 3), (3, 4), (4, 3), (1, 3), (3, 1)\}\). Which of the following properties does \(R \) have? (a) reflexive, (b) symmetric, (c) transitive, (d) antisymmetric.

(b) only

10. Find the number of permutations of the digits 1, 2, \cdots, 9 in which at most one digit is in its proper position.

266993

11. There are 6 different roads from city A to city B and 7 different roads from city B to city C. How many different round trips are there from City A to City C and back, passing through City B each way, and you don’t want to drive on any road more than once?

1260

12. The sum of the first two terms of the expansion of \((x + y)^9\) is \(x^9 + 9x^8y\). What is the third term?

\[36x^7y^2\]

13. A connected pseudograph has an Eulerian circuit if and only if the degree of each vertex is

even

14. True or False: A connected graph with 8 vertices has a Hamiltonian cycle if the degree of each vertex is greater than or equal to 4.

True

15. True or False: If a connected graph has 6 vertices and one of the vertex has degree 2, then no Hamiltonian cycles exist.

False

16. A tree is a connected graph which contains

no circuits

17. A subgraph of a connected graph \(G \) is called a spanning tree if it is a tree containing

all vertices of \(G \)

18. In applying Dijkstra’s algorithm for finding a shortest path from A to E in Fig. 1, the first two labeled vertices are \(A(−, 0) \) and \(G(A, 2) \). The next vertex to be labeled should be

\(I(G, 4) \)
19. In applying Kruskal’s algorithm for finding a minimum spanning tree in Fig. 2, the first 6 selected edges are AI, BC, CK, BJ, KL and AB. Which should be the next edge to be selected? DE or EF

Section 2. Other Problems (each problem is 2 point)

1. Find an Eulerian trail in Fig. 3 if possible.
 FCECDCBDEDFDABBA (other answers are possible)

2. Find a Hamilton cycle in Fig. 4 if possible.
 BAFEDIHGCB

3. Prove by induction that $4^n - 1$ is divisible by 3 for all positive integers n.
 For $n = 1$, $4^1 - 1 = 3$ is divisible by 3.
 Suppose it is true for $n = k$ for some k. Then $4^{k+1} - 1 = 4 \cdot 4^k - 1 = (3 + 1) \cdot 4^k - 1 = 3 \cdot 4^k + 4^k - 1$, and this is divisible by 3 because $3 \cdot 4^k$ is divisible by 3 and $4^k - 1$ is divisible by 3 by induction hypothesis. By induction, this proves that $4^n - 1$ is divisible by 3 for all positive integers n.

3