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Abstract
When a thin liquid crystal is driven by a sufficient A/C voltage, electroconvection pro-
duces complex spatiotemporal patterns. There is significant interest in quantifying this
spatiotemporal complexity using measures of dimensionality and Lyapunov exponents,
but these estimates are extremely difficult with experimental data because of the high
dimensionality of the raw data. Simulations of models, such as Raleigh-Benard con-
vection, indicate that there may be a low-dimensional representation of the process [2].
However, conventional techniques of dimensionality reductions such as the Karhunen-
Loeve Decomposition have been unable to recover a low dimensional process even for
low drivings levels [2,3].

We have developed a new nonlinear dimensionality reduction technique to significantly
decrease the number of dimensions needed to represent a given proportion of the total
spatiotemporal variance. By sampling representative sub-videos we construct a low-
dimension state space and a vector field that represents the dynamics of all sub-videos
simultaneously. These low-dimensional representations allow estimation of Lyapunov
exponents from experimental data, and may lead to new models of spatiotemporal
chaotic dynamics. Furthermore, in a multi-stable system, the reduced state space nat-
urally clusters the various attractors. Using the clustering to identify the attractors, we
hope to automatically identify the basins of attraction and then efficiently steer between
quasi-stable attractors.

Thin Liquid Crystals
Applying an A/C voltage to a thin liquid crystal produces complex spatiotemporal pat-
terns shown below. By varying the applied voltage we observe a continuous range of
dynamic behaviors.
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Liquid crystal driven at 10V, 12V, 14V, 16V, and 20V (left to right).

Ridges and Defects
The two important features to note in the above images are the continuous ridges and
the defects. At low driving voltages, the ridges move slowly across the image and only
deviate slightly from their preferred orientation. The defects are discontinuities in the
ridges and move more quickly and chaotically around the image. At the higher driving
voltages, the ridges begin to have larger deviations from their preferred orientation and
their movement becomes more complex. The concentration of defects becomes higher
and the defects move very quickly and sporadically. Below we see enlarged images of
the respective defects.
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Enlarged image showing defects at low voltage (left) and high voltage (right).

Nonlinear Dimensionality Reduction
Nonlinear Dimensionality Reduction (NLDR) techniques can simplify high-dimensional
data sets by imposing implicit regularity assumptions on the data. Diffusion Maps [1] and
Isomap [4] are NLDR techniques which will be used below. Both techniques preserve
the local data structure while changing non-local relationships in order to simplify the
data [5]. The methods are interchangeable below; while Diffusion Maps is faster and
more robust to noise it requires tuning additional nuisance parameters.

Isomap applied to a 2D manifold (left) produces the intrinsic coordinates (right)

Dimensionality Reduction Algorithm for
Spatiotemporal Attractors

1. Choose a representative sample of images (Vector Quantization).
2. For each image form a state vector, yi by appending several time delayed images.
3. Compute the covariance matrix, S, of the coordinates of the state vector.

4. Compute the initial distance matrix as d(i, j) =
√
(yi − yj)

TS(yi − yj).

5. For each column of d set all distances to “inf” except for the k nearest neighbors.
6. Recompute the long distance, thereby filling in all “inf” values:

(a) Diffusion Maps: Compute long distances as expected commute times.
OR

(b) Isomap: Compute long distances as graph geodesic distances.
7. Find the Singular Value Decomposition of the resulting matrix of distances.
8. Use the Singular Values to determine the dimension of the manifold.
9. Find the reduced coordinates by projecting on the appropriate Singular Vectors.

Application to Liquid Crystal Data
We applied our algorithm to the set of 562 overlapping 8x8-pixel sub-images of the liquid
crystal data at 10V. At lower left, the sub-images are arranged according to the low-
dimensional projection. The image on the right shows each sub-image being projected
into the reduced state space. The arrows indicate the trajectory from the previous time
period to the current. The alignment of the trajectories shows that the low voltage spa-
tiotemporal dynamics have a large deterministic component.

Application to Excitable Media Simulation
In this simulation we built a network of 256 neurons based on a simplified FitzHugh-
Nagumo model. The neurons were arranged in a 16x16 planar grid with connection
strengths decaying with distance. The system was found to be multi-stable, with three
dominant attractors. The simulation was run several times with random initial conditions
and our algorithm was applied to the resultant data.

Top to bottom: a clockwise spiral wave, a ring wave, and a counter-clockwise spiral.

Attractor Clustering in Multi-stable Systems
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Since the system spends most
of its time very close to an
attractor, there are very few
paths between attractors, so
the expected time for a diffu-
sion process to move between
attractors is long. Thus, the
Diffusion Maps version of our
algorithm naturally constructs
a low dimensional state space
in which the attractors are
separated. Moreover, since
the algorithm maintains the lo-
cal data structure, the dynam-
ics of the attractors are pre-
served in the low dimensional
state space. The image to
the left shows how individual
images are embedded in the
low dimensional state space.
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The image to the right shows the same
attractor structure from another angle,
where now we can see the transient
trajectories from the randomized initial
conditions. In the future we plan to ap-
ply this technique to more complex sys-
tems with many more quasi-stable at-
tractors. Attractors that are nearby in
the structure will be easier to transi-
tion between, thus creating clusters of
attractors. This representation of the
multi-stable structure may lead to new
techniques for steering in complex sys-
tems.
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