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Abstract

When a thin liquid crystal is driven by a sufficient A/C voltage, electroconvection pro-
duces complex spatiotemporal patterns. There is significant interest in quantifying this
spatiotemporal complexity using measures of dimensionality and Lyapunov exponents,
but these estimates are extremely difficult with experimental data because of the high
dimensionality of the raw data. Simulations of models, such as Raleigh-Benard con-
vection, indicate that there may be a low-dimensional representation of the process [1].
However, conventional techniques of dimensionality reductions such as the Karhunen-
_oeve Decomposition have been unable to recover a low dimensional process even for
ow drivings levels [1,2].

We have applied nonlinear dimensionality reduction techniques to significantly decrease
the number of dimensions needed to represent a given proportion of the total spatiotem-
poral variance. By sampling representative sub-videos we construct a low-dimension
state space and a vector field that represents the dynamics of all sub-videos simultane-
ously. These low-dimensional representations allow estimation of Lyapunov exponents
from experimental data, and may lead to new models of spatiotemporal chaotic dynam-
ICS.

Thin Liquid Crystals

Applying an A/C voltage to a thin liquid crystal produces complex spatiotemporal pat-
terns shown below. By varying the applied voltage we observe a continuous range of
dynamic behaviors.

Figure 1: Two liquid crystals driven at low voltage (left) and high voltage (right).

Ridges and Defects

The two important features to note in the above images are the continuous ridges and
the defects. At low driving voltages, the ridges move slowly across the image and only
deviate slightly from their preferred orientation. The defects are discontinuities in the
ridges and move more quickly and chaotically around the image. At the higher driving
voltages, the ridges begin to have larger deviations from their preferred orientation and
their movement becomes more complex. The concentration of defects becomes higher
and the defects move very quickly and sporadically. Below we see enlarged images of
the respective defects.

Figure 2: Enlarged image showing defects at low voltage (left) and high voltage (right).
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Nonlinear Dimensionality Reduction with Isomap

Isomap [3] is a Nonlinear Dimensionality Reduction technique based on a modification
of Multi-Dimensional Scaling (MDS) [4]. Isomap requires that the high-dimensional in-
put data lies near a low-dimensional manifold. The idea is to construct low-dimensional
coordinates by applying MDS to inter-point distances which are computed on the mani-
fold. To find these distances, Isomap starts with a k-nearest-neighbor graph consisting
of Euclidean distances. Then all inter-point distances are computed as the length of the
shortest path in the graph. Finally, MDS is applied to the matrix of inter-point distances.
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Figure 3: Isomap applied to a 2D manifold (left) produces the intrinsic coordinates (right)

DISO: Isomap for Spatiotemporal Dynamics

For dynamical data the state must incorporate spatial and temporal information. If the
vector T represents an 8x8 sub-image, then the evolution of Z(¢) should be restricted
to a manifold, which we assume has representation as a level set F(z, 7, ...,z\") = 0.
However, since the goal is to find a low dimensional representation of the dynamics,
we are not interested in finding F' explicitly. Instead we use time-delay coordinates to
construct an equivalent manifold, G(z(t), (t — 1), ..., T(t — 7)) = 0. The assumption that
G represents a low-dimensional manifold can be verified experimentally by observing
the decay of the singular values from MDS [4]. The first ten singular values for this

experiment are shown below. | | | |
Since nearby pixels and adjacent video frames

0.7 | | | | are correlated, differences in these coordinates
low voltage : will typically be small. However, we can en-
—high voltage _ hance these distances, and de-emphasize dif-
ferences between distant pixels, by defining a
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new metric as d(l,]) = \/<§Z — %)TS@Z — gj)
where S is the correlation matrix of the coordi-
nates of the vectors {y,}. By changing metric
before applying the Isomap algorithm we ob-
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Summary of DISO Algorithm

1. Choose a representative sample of sub-images.
2. For each sub-image form a state vector, 3; by appending several time delayed images.
3. Compute the covariance matrix, S, of the coordinates of the state vector.

4. Compute the initial distance matrix as d(i, j) = \/@i — gj)TS(yZ- — ;)

5. For each column of d set all distances to “inf” except for the k& nearest neighbors.
6. Use the all-to-all version of Dijkstra’s Algorithm to fill in “inf” values.

/. Find the Singular Value Decomposition of the resulting matrix of distances.

8. Use the Singular Values to determine the dimension of the manifold.

9. Find the reduced coordinates by projecting on the appropriate Singular Vectors.
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The Reduced State Space

We can visualize the resulting low-dimensional state space by plotting the original sub-
Images according to their new coordinates (shown below). Note that in the right image,
the x-axis captures information about how large the ridge in the sub-image is, while the
y-axis captures information about the location of the ridge. In the left image the meaning
of the coordinates is not as clear, and it is likely that the coordinates are capturing a
complex spatiotemporal property which varies continuously in both space and time.
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Figure 4. Sample subimages from the low voltage (left) and high voltage (right) crystals

Resulting Low Dimensional Dynamics

The images below show the results of each sub-image being projected into a reduced
state space. The arrows indicated the trajectory from the previous time period to the
current. The alignment of these trajectories shows that the low voltage spatiotemporal
dynamics have a large deterministic component. The high voltage state space dynamics
also shows some local alignment. This system may benefit from a higher frame rate.

Figure 5: Low voltage dynamics (left) and high voltage dynamics (right)

The DISO algorithm successfully adapts the Isomap algorithm to spatiotemporal dynam-
ics and reduces a 256 dimensional spatiotemporal state space to just three coordinates
while preserving 85% of the original variance. Spatiotemporal dynamics, such as those
exhibited by thin liquid crystals, are particularly difficult to analyze because of the high
dimensionality of the data. By reducing the dimensionality it may now be possible to
quantify the dynamics experimentally using Local Lyapunov Exponents or Lyapunov Di-
mension Density.

This research was supported by NSF grant EFRI-1024713

[1] Egolf et al., Mechanisms of extensive spatiotemporal chaos in Raleigh-Benard convection, Nature 404 (2000),
733-736.

[2] Dangelmayr et al., Diagnosis of spatiotemporal chaos in wave-envelopes of a nematic electroconvection pattern,
Physical Review E 79 (2009), 46215-46235.

[3] Tenenbaum et al., A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science 290 (2000),
2319-2324.

[4] John A. Lee and Michel Verleysen, Nonlinear Dimensionality Reduction, Springer- Verlag New York, Inc., New
York, New York, 2007.



