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1 Introduction

The rapid expansion of model complexity and data availability in the applied sciences is
quickly outpacing the classical approaches to mathematical modeling. My goal is to develop
methods which can provably find, reconstruct, and represent the hidden stochastic, geometric, and
algebraic structure of data. I am motivated by applications such as image and signal analysis, and
dynamical systems including dynamical networks; and currently I am collaborating with physicists
studying pattern evolution in liquid crystals [2], and biologists studying the evolution of neuronal
networks [3]. These applications involve high-dimensional data sets with high temporal resolution
such as video and micro-electrode array data. Motivated by these challenges, I am working to
extend the current methods of dimensionality reduction and discrete geometry such as Diffusion
Maps and the Discrete Exterior Calculus and integrate these methods with classical techniques
for data analysis.

My work so far has focused on the problems of data assimilation, prediction, and control for
high dimensional dynamical systems. Thus I have worked with techniques such as state space
reconstruction [2], ensemble Kalman filtering [1,4], limiting behavior of difference equations [5],
and semi-parametric statistical tests such as the Cox method [3]. I envision these techniques
as component parts of an emerging semi-parametric approach to complex systems. In my view,
classical approaches gravitate towards two different extremes. One extreme encompasses filtering
techniques, which are fully parametric and thus require that an exact model is specified. On the
other extreme are the non-parametric methods of state space reconstruction, which require no
explicit model. In my collaboration with scientists I have found that for many emerging problems
neither of these extreme approaches to is realistic. While a successful technique must fully utilize
existing models and a priori structure, often these will not efficiently or adequately explain the
observations. In these cases we need to be able to adaptively quantify and correct modeling errors
and discover residual structure in the data.

I am approaching this semi-parametric middle ground from both of the extremes. From the
non-parametric extreme, in [2] I have shown how to find the intrinsic geometric structure of
time series data. From the fully parametric extreme, in [1] I have shown that model error can
be automatically traded off for system noise to achieve significant improvement in existing fil-
tering techniques. Each of these theoretical results were directly motivated by the real world
problems that my collaborators in applied science were confronting and have lead to significant
improvements in their analyses. For example, in [2] we developed a new algorithm which provably
reconstructs the intrinsic geometry for a dynamical system from an observed time series. In this
case the a priori structure is that of a stationary temporal evolution, but more generally a priori
structures could be given by spatial relationships between coordinates (such as the layout of pix-
els in an image) or even incomplete or approximate models. In order to discover and represent
the hidden structure of data, I am currently working to extended methods for discrete geometry,
such as Diffusion Maps, and integrate these methods with classical time series analysis and data
assimilation techniques. These initial results suggest a more far-reaching program to develop a
semi-parametric technique which adapts an approximate model to the data and then extends the
model using new variables discovered through a non-parametric examination of the residuals.



In the following sections I will first address the weakness in current dimensionality reduction
techniques and how I plan to address them. In Section 2, I show how dimensionality reduction
techniques should use the existing structure of the data. I overview my work in [2] which shows
how to use the temporal structure of data and I describe several extensions of this research which
I am currently pursuing. Next I discuss new techniques which I am developing to isolate the
existing spatial structure found in many data sets and I give examples which show how this
makes finding the hidden structure of data more practical by reducing the data requirements. In
Section 3 discuss my long term goal of extending the dimensionality reduction technique known as
Diffusion Maps, which was developed by Coifman and Lafon in [8]. I believe diffusion maps can be
extended to describe more general geometric structures and can facilitate the discovery of higher
order geometric and topological features such as continuous symmetries and important quantities
from Hodge theory. Finally, in Section 4 I describe how the improvements to dimensionality
reduction will lead to a semi-parametric modeling technique by integration with my work in [2]
and [1].

2 Utilizing the known structure of data

In my experience working with real world applications, I have found that while existing meth-
ods for dimensionality reduction are powerful tools for finding hidden structure in data, there
are significant opportunities for improvement. One approach to improving dimension reduction
is through a better theoretical understanding of the methods, and in the next section I propose
extending existing methods to more general geometries and constructing higher order geometric
operators. However, an often overlooked, and possibly more important, aspect of dimension re-
duction is tailoring the approach to the known structure of the data, such as the pixel layout of an
image or the ordering of a time series. For example, if we apply dimensionality reduction to a time
series and we ignore the time-ordering, then often the dimensionality reduction will re-discover
the time ordering and declare this to be the most important feature of the data. However, this is
incredibly wasteful because we already knew the time ordering of the data. Thus, simply applying
dimension reduction without regard to the known structure of the data will only be successful for
relatively simple examples and will often rediscover features which were already known. In order
to find the hidden structure of the data we must first understand how to fully utilize the existing
structure so that we do not waste time and data on rediscovering the known structure.

While it seems a daunting task to develop specialized techniques for every data type, many
existing data structures are given by either a time ordering, or by meta-data describing a gener-
alized spatial layout of the data coordinates. In this section I first discuss how our work in [2]
recovers the natural geometry for a time series and I discuss some important extensions which will
also help motivate the theoretical goals of the next section. My next goal in this research program
is to find and represent the natural geometry of data that has an existing spatial structure. For
example, pixel coordinates are meta-data which give the spatial structure of an image. I propose
using a data-adapted harmonic analysis in order to efficiently represent the spatial structure of
the data. This data-adapted construction should start with the a priori spatial structure and then
combine this with the geometry extracted from the data itself to form the data-adapted spatial
geometry.

Diffusion Mapped Delay Coordinates (DMDC) [2] is the first step towards a practical approach
to reconstructing and analyzing the intrinsic geometry of time series. First, DMDC uses a weighted
time-delay embedding in the spirit of Takens’ to reconstruct the latent state space. Importantly we
prove that our embedding also reconstructs the latent geometry of the time-series and projects the
dynamics onto the most stable component. Next, DMDC uses the Diffusion Maps dimensionality



reduction technique to find the best low dimensional set of variables which accurately represent the
latent geometry. However, although DMDC is able to project onto the stable dynamics regardless
of dimension, when the stable dynamics are high dimensional a further reduction may be desired.
Moreover, while some applications only require the stable dynamics, control approaches such as
OGY [13] and Pyragas [14] also require knowledge of the unstable dynamics. These extensions will
require a complete reconstruction of the Lyapunov geometry for the dynamical system, a difficult
problem which will require extending the reconstruction theorem of [2] as well as new methods
for discrete representation of anisotropic geometries which are discussed in Section 3.

While my work with DMDC has focused primarily on the temporal structure of data, many
data sets will also have a spatial structure, which should inform our analysis. The most obvious
examples are images, and it is immediately clear that treating the pixels as independent and
unrelated observations (as PCA does for example) is a considerable underutilization of the data.
More generally, any meta-data which gives a notion of distance between data coordinates gives
an a priori spatial structure. For example, a collection of survey data may contain demographic
or location meta-data which can be used to define an a priori distance between the surveys.
Currently, using meta-data requires ad hoc solutions, each specially tuned to various data types
and applications, but the growing complexity of these problems calls for a more unified strategy.

I am currently developing a two-step approach to utilizing the spatial structure of data. In the
first step a user-supplied spatial structure, such as a pixel layout, is used to develop a harmonic
analysis on the supplied spatial structure. By representing the data in a generalized Fourier bases,
constructed by applying diffusion maps to the meta-data, we can naturally leverage the known
spatial structure to improve our understanding of the data. For example, consider two images
which are each all white except for a single black pixel. If we compare these images in the basis
of pixels then their distance will not depend on the proximity of the black pixels, so the natural
notion of distance is not captured in this basis. However, if we represent the images in a Fourier
basis and compute the distance using low frequency components then when the pixels are close to
each other the low-pass images will be similar and the distance between them will be smaller. This
shows how a spatial Fourier basis can incorporate the natural distance of the spatial structure
into our geometry. We refer to this first step as the spatial analysis. However, often the spatial
structure that is available is only does not fully capture the correct notion of similarity in the data
set.

Consider a video of an object moving in the plane of the image and simultaneously rotating
about its center. The content of each image can be naturally represented in a three dimensional
space given by the coordinates of the object and the angle of its rotation. The weakness of current
techniques (such as optimal basis construction), is that they do not recognize the geometry of
the sub-image space, and thus they cannot generalize to slightly different elements. To represent
the rotating object the optimal basis will require a different basis element for each angle in the
rotation. While dimensionality reduction techniques can find the three dimensional latent coordi-
nates, for practical purposes this will require enormous amounts of data. This is because current
dimensionality reduction techniques work by interpolation and thus they must have examples of
almost every orientation at each location. Thus, the current dimensionality reduction techniques
are re-discovering the spatial layout of the image at the same time as they are finding the hidden
structure of the rotation variable.

The adapted spatial analysis allows us to decouple the spatial layout of the image, which is
known a priori, from the hidden rotation variable. Our initial spatial analysis, by representing the
images in the low frequency spatial Fourier modes, would capture the location of the object within
the image, however this projection would blur the image so that the rotation is not captured. Thus
the a priori spatial layout of the pixels reveals two of the three latent coordinates. To find the



remaining structure we can now focus on the high frequency spatial Fourier modes. Effectively this
produces the quotient space where the location information is removed, and now the dimensionality
reduction technique only needs to find the remaining one-dimensional structure of the rotation
variable, rather than the full three dimensional structure of the data set. The key to the wide
applicability of this quotient technique is to that the Fourier analysis can be adapted to any spatial
structure, which allows us to decouple any known spatial structure from the hidden structure. In
the future I also plan to use generalized wavelet bases to achieve finer local control of the quotient
space and to exploit symmetries in the existing spatial structure.

3 Finding hidden structure in data

Overcoming current modeling challenges requires radically transforming the current state of the
art of dimension reduction. My thesis research is focused on the development of new approaches to
interpretation, resolution, and feature extraction for high-dimensional dynamical data. Diffusion
maps, a technique developed by Coifman and Lafon in [8], is the first technique which provably
reconstructs the geometry of a manifold from discrete samples in Euclidean space for an arbitrary
positive sampling density. In this section I focus on overcoming critical weaknesses in the current
diffusion map approach, by extending the technique to more general geometries which allow drift
and anisotropy in the Laplace-Beltrami operator. Next I propose merging diffusion maps with
the discrete exterior calculus, developed in [6,7] which will allow the construction of higher or-
der geometric operators. This will allow novel methods of using the diffusion geometry, to find
symmetries in the adapted geometry that represent intrinsic features of the data.

As we show in [2], diffusion maps allows approximation of the second order diffusion term of
an evolution. We propose to extend the approximation to match the first order drift term of the
evolution and improve the second order term by approximating the local covariance structure of
the diffusion. From a geometric point of view, instead of defining a symmetric diffusion metric,
we will define an asymmetric generalization of the metric called a Finsler function and model
our data as a Finslerian manifold (a generalization of a Riemannian manifold). This approach
has a particularly valuable interpretation for dynamical data, where the operators we construct
can evolve a distribution of events forward in time to predict their likelihood. The ultimate goal
would be to find a procedure which uses the local covariance structure of the data (and the time
ordering if available) to provably construct a discrete approximation to the Finsler function for
our manifold. This is a natural generalization of diffusion maps, which provable constructs the
heat kernel on a manifold, and thus our Finsler function should be given implicitly by asymmetric
kernel which is discretely approximated for each pair of data points in a large sparse matrix.

To motivate the next natural extension of diffusion maps, imagine a video where one pendu-
lum is placed behind the other, such a data set is intrinsically two-dimensional and cannot be
decomposed using the existing structure of the data because the pendulums occupy overlapping
spatial and temporal scales. This simple example illustrates the problem posed by intrinsically
high-dimensional data, and in general the relationship between the variables could be arbitrarily
complex. Diffusion maps finds a low dimensional embedding of this data set by approximating the
eigenfunctions of Laplacian on the underlying geometry, however, for a high dimensional manifold
this is insufficient to separate the independent components. In fact, we will require the full power
of de Rham cohomology and Hodge theory to carry out this goal.

Fortunately, recent work [6,7] has paved the way for de Rham cohomology to be computed
efficiently in engineering applications using a discrete version of exterior calculus. In fact we
will show that the de Rham cohomology is a natural generalization of diffusion maps to higher-
dimensional structures. Our proposal is to complete the theory which connects the discrete exterior



calculus to the diffusion maps construction and then to develop practical algorithms that exploit
the cohomology to extract features from high-dimensional structures in data.

The de Rham cohomology allows one to extend the notion of linear independence to curved
geometric structures. Equivalence classes of cochains correspond to separate intrinsic features in
the data that can be smoothly deformed to match one another. These equivalence classes can
be identified by finding the harmonic forms of higher order Laplacian operators [11,12], and we
will see that in the context of the discrete exterior calculus this can be represented as a large
eigenvector problem. In our example of the two overlapping pendulums, each image of the movie
can be defined by two intrinsic angles which define a torus. The first de Rham cohomology
group for the torus contains exactly two equivalence classes which correspond to the two angles
that define the separate pendulums. Thus by projecting onto one of the equivalence classes we
can extract the corresponding pendulum. This example illustrates how the de Rham cohomology
captures the structure of a multidimensional manifold and can be used to decompose the manifold
into its intrinsic topological features.

Finally, the ability to isolate some features of data requires certain symmetries in the under-
lying geometry. The existence of redundant structures and related symmetries may imply the
existence of hidden algebraic structures. The idea of invariance under the diffusion geometry
as a generalization of isometry [17,18] has been developed into a method for finding intrinsic
symmetries in a data set using the eigenmodes of the Laplace-Beltrami operator with isolated
eigenvalues [19]. However, isolated eigenvalues correspond to simple reflection symmetries, and I
am more interested in repeated eigenvalues which correspond continuous symmetries, represented
by subgroups of orthogonal matrices. These complex group structures correspond to significant
inefficiencies in the data representation. Moreover, in the case of many interconnected symme-
tries, there may be efficient representations which correspond to group factorizations. Finally, by
finding partial symmetries it may be possible to produce new, unobserved data by generating the
data points that would complete these symmetries.

4 Making the ensemble Kalman filter adaptive

Kalman filtering is a well-established part of the engineering canon for state and uncertainty
quantification. In the case of a linear plant with Gaussian system and observation noise, Kalman’s
algorithm is provably optimal, provided that the exact model and noise statistics are known.
Further uses of the Kalman filter have included parameter fitting, where the parameters are
treated as states with trivial dynamics, which is typically called “dual estimation”. Our use of
EnKF for fitting parameters, including connection coefficients in networks [4], is a challenging
problem for the ensemble Kalman filter as well as other known algorithms. Our pursuit of this
goal, which pushes the efficiency of the Kalman filter to its limit, led us to search for ways to
optimize the filtering process.

For nonlinear systems, the Extended Kalman Filter (EKF) and Ensemble Kalman Filter
(EnKF) provide two different ways to make use of the Kalman update. While these techniques
have considerable success in applications, there are theoretical issues which can lead to filter di-
vergence or poor performance. The root of these issues is the assumption that the error of the
current state estimate (called the background distribution) has a Gaussian distribution. While
this is true for linear systems it fails in general for nonlinear systems, which implies that the
Kalman update cannot correctly integrate the information of the current state estimate with the
information of the incoming observations. This causes the covariance estimate to diverge from the
true background covariance.

Various ad hoc solutions, such as covariance inflation, have been proposed. In [1] we replace



these ad hoc covariance inflation strategies with a theory-based, realtime approximation of the
covariance matrices of the noise processes. Our technique is inspired by the innovation correlation
method of Mehra [24, 25]; however, significant changes are required to lift this technique to the
nonlinear domain. We show that when the correct model is given, the estimated covariance
matrices approximate the true matrices. Moreover, when model error is present the system noise
covariance automatically adjusts in a way that compensates for the model error. In both cases
our adaptive filter leads to significant reductions in the RMSE of state estimates.

I plan to extend this foundational work in several ways which will increase the applicability of
our adaptive EnKF. First, the method of Mehra requires full observability, and in cases of partial
observability he bypass the noise covariance by using the stationarity of the optimal Kalman
gain. Of course, for nonlinear systems the optimal gain is not stationary. To recover the system
noise covariance in the case of partial observability we propose an augmented observation formed
by concatenating several iterations of the dynamics, which can be compared to time-delayed
observation vector. For a generic observation, the time-delayed observation vector should fully
represent the underlying state space making the augmented observation invertible [26]. We believe
that this augmented observation will not only solve the partial observability problem, but may
also improve the stability of the Kalman filter by including more observed information in each
Kalman update.

A second natural extension would be to allow non-additive system noise, which is usually
accomplished in the EnKF by augmenting the state vector and covariance matrix to include the
realization of the noise in the ensemble. A particularly interesting consequence is that non-additive
noise could help compensate for the multiplicative effects of Lyapunov exponents in a strongly
nonlinear system.

Finally, it may be helpful to allow the covariance of the system noise to be state dependent, for
example by recording each estimated covariance and using a local interpolation at each filter step.
This would allow for heteroscedastic statistics, but even more interesting is that it could effectively
provide a local correction to the Kalman update, which may help compensate for the incorrect
assumption that the state estimate error is Gaussian in the extended and ensemble Kalman filters.
The bigger picture is that accounting locally for nonlinearity and resultant Lyapunov exponents
suggests the possibility of an optimal filter for a nonlinear system which would revolutionize the
theory and applications of filtering.

Our current adaptive EnKF algorithm can be considered a coarse approach to extending the
model; we determine an additive system noise term which is sufficient to explain the observation
errors. In [1] the implied system noise found by our algorithm greatly improves the state estimates
even in cases of large model error. While this first step only uses an additive stochastic term to
compensate for model error, it opens the door to more advanced analysis of the residuals. Another
promising candidate for adapting a parametric filter to the residuals is to use our non-parametric
algorithm, Diffusion Mapped Delay Coordinates (DMDC). For a Kalman filter with an incomplete
or incorrect model, the residual errors should contain a predictable component. Applying DMDC
to these residuals would produce an optimal set of new variable to append to the state space. This
leads to several interesting and promising research questions. First, what dynamics should be used
for these new state variables, and how do we modify the Kalman update to estimate and predict
with these new variables? Second, can we now use these new variables to improve our existing
models by allowing the existing parameters to depend on the new state variables? Finally, can
we prove that analyzing these residuals can actually reconstruct the missing or erroneous parts of
our existing model? Answering these questions will undoubtedly require further developments in
the theory of DMDC and the dimensionality reduction techniques discussed above.
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