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1 Coulomb force

Consider a collection ofNp point particles with positions x = {x1, x2, . . . , xNp
} and charges q =

{
q1, q2, . . . , qNp

}
;

each xj ∈ R3 and qj ∈ R. The Coulomb force on particle i due to the others is

F i
C = qiEC(xi) (1)

= −qi

∇(−∆)−1 1

ε0

Np∑
j=1,j 6=i

qjδxj

 (xi) (2)

=
qi

4πε0

Np∑
j=1,j 6=i

qj
|xi − xj |3

(xi − xj), (3)

where δx is the Dirac-delta distribution centered at x. The total cost to compute the Coulomb force on
every particle due to all the others is O(N2

p ), which is prohibitively large for sufficiently large Np. A cheaper
alternative to compute the electrostatic force on particle i is the PIC approach.

2 Particle-in-cell (PIC) approach

Let Sa : R3 → R be a smooth function with fixed compact support of diameter a > 0 that integrates to 1,
and define the smoothing operator SE(x) : RNp → L2(R3)

SE(x)[u](r) :=

Np∑
j=1

Sa(xj − r)uj (4)

and the interpolation operator JE(x) : L2(R3)→ RNp

(JE(x)[v])i :=

∫
R3

Sa(xi − r)v(r)dr, (5)

both of which are parameterized by x ∈ RNp × R3. These operators are adjoints of each other, so that for
fixed x ∈ RNp × R3, any u ∈ RNp , and any square integrable function v

〈JE(x)[v], u〉RNp =

Np∑
j=1

[∫
R3

Sa(xj − r)v(r)dr

]
uj =

∫
R3

 Np∑
j=1

S(xj − r)uj

 v(r)dr (6)

=

∫
R3

SE(x)[u](r)v(r)dr = 〈v,SE(x)[u]〉L2(R3) . (7)

The particle-in-cell (PIC) approach to compute the Coulomb force on particle i due to all the others
consists of smoothing the collection of point charges with SE , solving Poisson’s equation for the potential,
taking the negative gradient of the potential, and then interpolating the result with JE . Let φ solve the
Poisson equation

− ε0∆φ = (SE(x)[q]), (8)
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and define Ei
P := −(JE(x) [∇φ])i, where JE acts on each component of ∇φ. The electrostatic force on

particle i is then simply computed as
F i
P = qiE

i
P , (9)

where the subscript P signifies that the quantities were computed from the solution to Poisson’s equation.
The numerical solution to (8) can be computed relatively quickly using standard Krylov subspace or spectral
methods.

By linearity, the electric potential at a point y resulting from the solution to (8) is

φ(y) =
1

ε0
(−∆)−1

 Np∑
j=1

qjSa(xj − r)

 (10)

=
1

4πε0

Np∑
j=1

qj g(xj , y), (11)

where

ga(xj , y) :=

∫
R3

Sa(xj − r)
|y − r|

dr. (12)

For fixed y, the 1/|y − r| term in the integrand can be written as a multipole expansion about xj , so that

1

|y − r|
=

1

|y − xj |
+

(y − xj)
|y − xj |3

· (r − xj) + ψ(r, y − xj), (13)

where ψ represents the quadrupole, octopole, and higher order terms and decays as |y − xj |−5 or faster.
Inserting the expansion into ga gives

ga(xj , y) =
1

|y − xj |
+

y − xj
|y − xj |3

·
∫
R3

(r − xj)Sa(xj − r)dr +

∫
R3

Sa(xj − r)ψ(r, y − xj)dr, (14)

where the fact that Sa integrates to 1 is used. Further assume both here and below that Sa is symmetric,
so that Sa(−r) = Sa(r) ∀r ∈ R3; it then has vanishing first moment∫

R3

rSa(r)dr = 0, (15)

and hence the dipole moment of φ will vanish. Therefore,

φ(y) =
1

4πε0

Np∑
j=1

qj

(
1

|y − xj |
+

∫
R3

Sa(xj − r)ψ(r, y − xj)dr
)
. (16)

If the higher order terms in the multipole expansion are neglected, then φ is approximated by the sum of
monopoles. If φM denotes this truncated potential, then the resulting electric field is

−∇φM (y) =
1

4πε0

Np∑
j=1

qj
|y − xj |3

(y − xj). (17)

Applying the interpolation operator JE(x) to each vector component of (17) gives

−(JE(x) [∇φM ])i = −
∫
R3

Sa(xi − y)∇φM (y)dy (18)

=
1

4πε0

Np∑
j=1,j 6=i

∫
R3

Sa(xi − y)
qj

|y − xj |3
(y − xj)dy; (19)
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note the j = i term vanishes due to the assumed symmetry of Sa. Similar to above, the vector (y−xj)/|y−xj |3
can be expanded about the point xi:

y − xj
|y − xj |3

=
xi − xj
|xi − xj |3

+

∇y

(
y − xj
|y − xj |3

) ∣∣∣∣∣
y=xi

 (y − xi) + Ψ(y, xi − xj), (20)

where, as before, Ψ represents higher order terms in the vector expansion. Since the second order tensor in
brackets has no y-dependence, it can be brought outside the integral. Using again (15) and that Sa integrates
to 1, (19) reduces to

− (JE(x) [∇φM ])i =
1

4πε0

Np∑
j=1,j 6=i

(
xi − xj
|xi − xj |3

+

∫
R3

Sa(xi − y)Ψ(y, xi − xj) dy
)
. (21)

Ergo, if one again neglects the higher order terms built into Ψ, equality of (1) and (9) results, so that the
electrostatic force on particle i computed by PIC approach is equal to the direct O(N2

p ) Coulomb calculation:

F i
C = F i

P .
Of course, the equality of the two approaches is only approximate, and only correct to the extent that

the ψ and Ψ terms in the Taylor expansions (13) and (20) are asymptotically small, which is true when pairs
of point charges are well separated relative to the diameter a of the support of Sa:

|xi − xj |
a

� 1. (22)

In the case when (22) does not hold, it is easy to see that in general F i
C 6= F i

P . Consider a two particle
system with charges q1 and q2 at the respective positions x1 and x2. For such a configuration, the Poisson
equation (8) resulting from the PIC approach has solution

φ(y) =
1

4πε0

∫
R3

1

|y − r|
(q1Sa(x1 − r) + q2Sa(x2 − r)) dr (23)

with associated electric field

−∇φ(y) =
1

4πε0

∫
R3

(y − r)
|y − r|3

(q1Sa(x1 − r) + q2Sa(x2 − r)) dr. (24)

After applying the interpolation operator JE(x), one obtains

F 1
P = −q1 (JE(x) [∇φ])1 =

1

4πε0

∫
R3

q1Sa(x1 − y)

∫
R3

(y − r)
|y − r|3

(q2Sa(x2 − r)) dr dy (25)

for the force on particle 1 due to particle 2 (note the particle exerts no force upon itself, again, by symmetry
of Sa). A similar result holds for the total force on particle 2, F 2

P . In general, (25) is not equivalent to the
standard Coulomb force (3); formally this only occurs in the limit a → 0. Finally, note that if one makes
the variable transforms w = x1 − r and z = x1 − y, (25) becomes

F 1
P =

q1q2

4πε0

∫
R3

Sa(z)

∫
R3

(w − z)
|w − z|3

Sa(w − x12)dw dz, (26)

x12 = x1 − x2, which is the expression found in the classical text [1] by Hockney and Eastwood, as well as
various papers in the physics/chemistry literature; see, for example, [2].

3 P3M

The above observations motivate a mixed approach for the efficient computation of the Coulomb forces on a
collection of Np point particles. It consists of solving the Poisson equation (8) from the PIC approach in order
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to efficiently calculate “far-field” forces, as well as performing a “short range”, direct Coulomb calculation
for all particles in a neighborhood of one another. An extra force calculation is needed, however, to correct
for the fact that the PIC approach incorrectly captures the short range forces. The resulting procedure is
termed the “particle-particle, particle-mesh” (P3M) method, described and analyzed in the classical text [1]
of Hockney and Eastwood–see references therein for the historical development of the method.

Let

Ω(i) : = {j ∈ {1, . . . , Np}, j 6= i| suppSa(xi − ·) ∩ suppSa(xj − ·) 6= ∅} (27)

= {j ∈ {1, . . . , Np}, j 6= i| |xi − xj | < 2a} (28)

define a local neighborhood of particle i. The total force on particle i in the P3M method is computed as

F i
P3M = F i

SR + F i
LR −Ri, (29)

that is, with a short-range, a long-range, and a correction “reference” force. The long range force is computed
exactly as in PIC approach described above, so that for φ solving (8),

F i
LR = −qi (JE(x) [∇φ])i (30)

=

Np∑
j=1,j 6=i

qiqj
4πε0

∫
R3

Sa(xi − y)

∫
R3

(y − r)
|y − r|3

Sa(xj − r)dr dy. (31)

The short range force is given as

F i
SR =

∑
j∈Ω(i)

qiqj
4πε0

(xi − xj)
|xi − xj |3

, (32)

and the correction force is simply

Ri =
∑

j∈Ω(i)

qiqj
4πε0

∫
R3

Sa(xi − y)

∫
R3

(y − r)
|y − r|3

Sa(xj − r)dr dy (33)

=
∑

j∈Ω(i)

qiqj
4πε0

∫
R3

Sa(z)

∫
R3

(w − z)
|w − z|3

Sa(w − xij)dr dy (34)

For efficiency, the correction force Ri is pre-computed and tabulated for fixed Sa as a function of xij = xi−xj .
For appropriately chosen smoothing function Sa, Ri can be treated (approximately) as a function of the
separation distance |xij | only, hence reducing the dimensionality of the “reference” table.

Inserting each force (30), (32), (33) into the expression (29) gives

F i
P3M =

∑
j∈Ω(i)

qiqj
4πε0

(xi − xj)
|xi − xj |3

(35)

+
∑

j /∈Ω(i)

qiqj
4πε0

∫
R3

Sa(xi − y)

∫
R3

(y − r)
|y − r|3

Sa(xj − r)dr dy. (36)

Making use of multipole expansions in the same manner as (13) and (20) above,

F i
P3M =

∑
j∈Ω(i)

qiqj
4πε0

(xi − xj)
|xi − xj |3

+
∑

j /∈Ω(i)

qiqj
4πε0

(xi − xj)
|xi − xj |3

(37)

+
∑

j /∈Ω(i)

qiqj
4πε0

∫
R3

Sa(xi − y)

(
Ψ(y, xi − xj) +

∫
R3

Sa(xj − r)∇yψ(r, y − xj)dr
)
dy (38)

= F i
C +

∑
j /∈Ω(i)

qiqj
4πε0

∫
R3

Sa(xi − y)

(
Ψ(y, xi − xj) +

∫
R3

Sa(xj − r)∇yψ(r, y − xj)dr
)
dy. (39)

Hence, in theory, the force on each particle i resulting from the P3M method is equivalent to Coulomb force
(1), up to the size of the terms higher order terms Ψ (respectively ψ) in the multipole vector (resp. scalar)
expansions of the singular integral kernels.
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