Differential Geometry Seminar Notes Book: Elementary Differential Geometry by O'Neill George Mason University

Spring 2018

Contents

Table of Contents 2
1 Lecture 1 - Ryan Vaughn - 02/01/2018 3
1.1 Directional derivatives: 4
2 Lecture 2 - Ryan Vaughn - 01/07/2018 5
2.1 Curves in \mathbb{R}^{3} 5
2.2 Mappings 6
3 Lecture 3 -Problem discussion - 02/14/2018 8
4 Lecture 4 - Ryan Vaughn - 02/21/2018 9
4.1 The Covariant Derivative in \mathbb{R}^{3} 9

1 Lecture 1-Ryan Vaughn - 02/01/2018

Definitions and Notations:

1. \mathbb{R}^{n} - n-tuples of points $p=\left(p_{1}, \ldots p_{n}\right)$ such that $p_{i} \in \mathbb{R}$. \mathbb{R}^{3} we distinguish $p=$ $\left(p_{1}, p_{2}, p_{3}\right) \in \mathbb{R}^{3}$,
2. $x: \mathbb{R}^{3}: \rightarrow \mathbb{R}$ where $x(p)=p_{1}$ are the coordinate functions.
3. $C^{\infty}\left(\mathbb{R}^{n}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$: all partial derivatives of f exist of all orders and are continuous for all $\left.p \in \mathbb{R}^{n}\right\}$.

Example 1.1. Consider the following function f.

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & \text { at }(x, y)=(0,0)\end{cases}
$$

Then f is an example where all partial derivatives exist but the total derivative doesn't.
Recall:

$$
\left.\frac{\partial f}{\partial x_{i}}\right|_{p \in \mathbb{R}^{n}}=\lim _{t \rightarrow 0} f \frac{\left(p+t e_{i}\right)-f(p)}{t}
$$

Definition 1.2. Let $p \in \mathbb{R}^{3}$, the tangent space at $p, T_{p} \mathbb{R}^{3}$ is the set

$$
T_{p}\left(\mathbb{R}^{3}\right)=\left\{v_{p}=(v, p): v \in \mathbb{R}^{3}\right\}
$$

Definition 1.3. A vector field V is a function which maps each point p to a tangent vector v_{p}.

$$
V: \mathbb{R}^{3} \rightarrow T \mathbb{R}^{3}=\bigcup_{p \in \mathbb{R}^{3}} T_{p} \mathbb{R}^{3}
$$

Vector fields can be added and multiplied by $C^{\infty}\left(\mathbb{R}^{n}\right)$ functions.

$$
\begin{gathered}
v+w(p)=v(p)+w(p) \forall p \in \mathbb{R}^{3} . \\
f v(p)=f(p) v(p)
\end{gathered}
$$

Example 1.4. $u_{1}(p)=\left.(1,0,0)\right|_{p} u_{2}(p)=\left.(0,1,0)\right|_{p}, u_{3}(p)=\left.(0,0,1)\right|_{p}$. At each point p, $\left\{u_{1}(p), u_{2}(p), u_{3}(p)\right\}$ form a basis for $T_{p}\left(\mathbb{R}^{3}\right)$. A frame is a collection of vector fields that form a basis at each point for the vector fields. This is called the natural frame field. It is a global frame).

Remark: Sometimes tangent vectors are defined as being linear derivations(Lee).
Lemma 1.5. If V is a vector field in \mathbb{R}^{3}, then V can be written uniquely as

$$
V=v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3} \text { where } v_{1}, v_{2}, v_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}
$$

Here v_{1}, v_{2}, v_{3} are called Euclidean Coordinate Functions.

Smooth or continuous vector fields:

A vector field is smooth iff $v_{1}, v_{2}, v_{3} \in C^{\infty}\left(\mathbb{R}^{3}\right)$.
A vector field is continuous iff $v_{1}, v_{2}, v_{3} \in C^{0}\left(\mathbb{R}^{3}\right)$.

1.1 Directional derivatives :

Definition 1.6. Directional derivatives take in tangent vectors and functions $C^{\infty}\left(\mathbb{R}^{3}\right)$ and output a real number. Directional derivatives of f in the direction v at point p is denoted

$$
v_{p}(f)=\lim _{t \rightarrow 0} \frac{f(p+t v)-f(p)}{t}=\left.\frac{d}{d t} f(p+t v)\right|_{t=0}
$$

Lemma 1.7 (pg 12). Let $v_{p}=\left(v_{1}, v_{2}, v_{3}\right)_{p}$, then

$$
v_{p}[f]=\sum_{i=1}^{3} v_{i} \frac{\partial f}{\partial x_{i}}(p)=\left.v_{p} \cdot \nabla f\right|_{p}=\left(\left.\frac{\partial f}{\partial x_{i}}\right|_{p}\right)
$$

Remark: Directional derivative is a linear derivation on $C^{\infty}\left(\mathbb{R}^{3}\right)$.
Theorem 1.8. Let $f, g \in C^{\infty}\left(\mathbb{R}^{3}\right)$ and $v_{p}, w_{p} \in T_{p}\left(\mathbb{R}^{3}\right)$ and $a, b \in \mathbb{R}$

$$
\begin{gathered}
\text { 1) } v_{p}[a f+b g]=a v_{p}[f]+b v_{p}[g](\text { linear }) \\
\text { 2) } v_{p}[f g]=v_{p}[f] g(p)+f(p) v_{p}[g](\text { derivation }) \\
\text { 3) } a v_{p}+b v_{p}[f]=a v_{p}[f]+b w_{p}[f]
\end{gathered}
$$

2 Lecture 2-Ryan Vaughn - 01/07/2018

The talk started with highlights from last lecture.

2.1 Curves in \mathbb{R}^{3}

Section 1.4 from textbook.
Definition 2.1. A curve $\alpha: I \rightarrow \mathbb{R}^{3}$ is a smooth function where I is an open interval .
Example 2.2 (Straight line.). Let $p, q \in \mathbb{R}^{3}$.

$$
\alpha(t)=p+t q .
$$

The straightline is based at p in the direction q.
Big point: given a tangent vector v_{p} there exists a straight line

$$
t \mapsto p+t v
$$

such that $\alpha(0)=p$.
Every curve has a natural tangent vector "at each point" along the curve.
Definition 2.3. Velocity of α at t_{0}

$$
\alpha\left(t_{0}\right)=\left.\left(\frac{d \alpha_{1}}{d t}, \ldots, \frac{d \alpha_{n}}{d t}\right)\right|_{\alpha\left(t_{0}\right)}
$$

The velocity vector corresponds to a tangent vector V_{p} at a base point p.
Definition 2.4. Let J be an open interval $h: J \rightarrow I$ be smooth. We call the curve $\beta=\alpha \circ h$ a reparametrization of α. By the chain rule

$$
\beta^{\prime}(t)=\left.\frac{d h}{d t}\right|_{t} \cdot \alpha^{\prime}(t)
$$

Note: Another way of defining tangent vectors is as an equivalence class of curves

$$
V_{p}=[\alpha] .
$$

where

1. $\alpha(0)=p$.
2. $\alpha^{\prime}(0)=v$
3. $\alpha \sim \beta$ if $\alpha^{\prime}(0)=\beta^{\prime}(0)$ i.e., $[\alpha]=[\beta]$.

2.2 Mappings

Section 1.7 from textbook.
Overview: Every smooth function (mappings) $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ induces linear maps

$$
F_{*_{p}}: T_{p} \mathbb{R}^{n} \rightarrow T_{F(p)} \mathbb{R}^{m}
$$

Definition 2.5. Let F be as above. If $v_{p} \in T_{p}\left(\mathbb{R}^{n}\right)$, then let $F_{*_{p}}\left(v_{p}\right)$ be the initial velocity of the curve $t \mapsto F(p+t v)$.

Proposition 2.6. Let $F=\left(f_{1}, . ., f_{m}\right), F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Then

$$
F_{*}\left(v_{p}\right)=\left(v_{p}\left[f_{1}\right], . ., v_{p}\left[f_{m}\right]\right)=\left.\left(v\left[f_{1}\right], . ., v\left[f_{m}\right]\right)\right|_{p}(\text { the directional derivative at } p) .
$$

Proof. Let
$\beta=F(p+t v)$.

$$
\begin{aligned}
F_{*_{p}}\left(v_{p}\right)=\beta^{\prime}(0) & =\frac{d}{d t}\left(f_{1}(p+t v), \ldots, f_{m}(p+t v)\right) \\
& =\left(\frac{d}{d t} f_{1}(p+t v), \ldots, \frac{d}{d t} f_{m}(p+t v)\right) \\
& =\left(v_{p}\left[f_{1}\right], . ., v_{p}\left[f_{m}\right]\right)
\end{aligned}
$$

Exercise 1. What is $F_{*}\left(\left.e_{1}\right|_{p}\right)$ where $e_{1}=(1,0,0, \ldots, 0)$?

$$
F_{*}\left(e_{1_{p}}\right)=\left.\left(\begin{array}{c}
e_{1}\left[f_{1}\right] \\
\vdots \\
e_{1}\left[f_{n}\right]
\end{array}\right)\right|_{p}=\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{1}}(p) \\
\vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(p)
\end{array}\right)
$$

This exercise clearly generalizes to the i-th standard basis vector e_{i}. Simply substitute i for 1 in the above.

Writing F_{*} as a matrix. Choose $\left.\left(e_{i}\right)\right|_{p}$ for $i \in\{1, \ldots, n\}$ as a basis for $T_{p}\left(\mathbb{R}^{n}\right)$, and for $\left.T_{F(p)} \mathbb{R}^{m}\left(e_{j}\right)\right|_{F(p)}$ for $j \in\{1, \ldots, m\}$. We know

$$
e_{i} \mapsto\left(\begin{array}{c}
\vdots \\
\frac{\partial f_{j}}{\partial x_{i}} \\
\vdots
\end{array}\right)
$$

The i th column of our matrix should be $\left(\begin{array}{c}\vdots \\ \frac{\partial f_{j}}{\partial x_{i}} \\ \vdots\end{array}\right)$.

Matrix representation of F_{*} at p is the Jacobian J at p.

$$
J=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(p) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(p) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(p) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(p)
\end{array}\right)
$$

Definition 2.7. A mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is regular if $F_{*_{p}}$ is one to one for all points $p \in \mathbb{R}^{n}$.
From linear algebra, the following are equivalent.

1. $F_{*_{p}}$ is one to one.
2. $F_{*_{p}}\left(v_{p}\right)=0$ if and only if $v_{p}=0$.
3. The Jacobian at p is rank n where n is the dimension of the domain in F.

Theorem 2.8 (Inverse Function Theorem). Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a mapping. If $F_{*_{p}}$ is one to one, there exists open set $U \subseteq \mathbb{R}^{n}$ and $V \subseteq \mathbb{R}^{m}$ such that $\left.F\right|_{u}: U \rightarrow V$ is bijective, smooth, and $\left.F^{-1}\right|_{V} V \rightarrow U$ is smooth. In other words, $\left.F\right|_{U}$ is a diffeomorphism.

Exercise 2. 1. Anything in 1.7. If you choose to do any of $1-4$, try to do all of $1-4$, since they are related.
2. Prove the Inverse Function Theorem for $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
3. Prove that the following three definitions of $T_{p}\left(\mathbb{R}^{n}\right)$ are isomorphic as vector spaces over \mathbb{R}
(a) Set of ordered pairs (V, p) in $\mathbb{R}^{n} \times\{p\}$.
(b) Set of linear derivations over \mathbb{R} in $C^{\infty}\left(\mathbb{R}^{n}\right)$.
(c) Set of equivalence classes of curves with the same initial velocity.

3 Lecture 3 -Problem discussion - 02/14/2018

Exercise 3 (problem 7.6 from book - presented by Michael). a. Give an example to demonstrate that a one-to-one and onto mapping need not be a diffeomorphism.
b. Prove that if a one-to-one and onto mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is regular, then it is a diffeomorphism.

Proof. a. $f: \mathbb{R} \rightarrow \mathbb{R} . \quad f(x)=x^{3}$. Then $f^{-1}(x)=x^{1 / 3}$ and $\left(f^{-1}\right)^{\prime}(x)=-\frac{1}{3} x^{\frac{-2}{3}}$ is continuous but not.
b. $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is regular and bijective. Then it has a set theoretic inverse $F^{-1}: \mathbb{R}^{n} \rightarrow$ $\mathbb{R}^{n} . F_{*_{p}}$ is injective for all $p \in \mathbb{R}^{n}$ by regularity. By inverse function theorem, for any $p \in \mathbb{R}^{n}$, there exists open $U \subset \mathbb{R}^{n}$ such that $\left.F\right|_{U}$ is a diffeomorphism onto its image. $\left.F^{-1}\right|_{F(U)}$ is differentiable, so F^{-1} is differentiable everywhere.

Exercise 4. If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, prove that $F_{*}\left(v_{p}\right)=F(v)_{F(p)}$.
Proof. Let $F=\left(f_{1}, \ldots, f_{m}\right)$. Then $F(v)=A v$ where

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right) .
$$

Then $f_{i}(v)=a_{i 1} v_{1}+\ldots+a_{i n} v_{n}$. Therefore,

$$
\frac{\partial f_{i}}{\partial x_{1}}=a_{i 1}
$$

. Therefore

$$
F_{*}\left(v_{p}\right)=J_{p}\left(v_{p}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)=A
$$

4 Lecture 4 - Ryan Vaughn - 02/21/2018

4.1 The Covariant Derivative in \mathbb{R}^{3}

Note: This chapter heavily relies on properties of \mathbb{R}^{3} as opposed to general manifold M of dimension n.

1. \mathbb{R}^{3} has a global chart
2. \mathbb{R}^{3} is parallelizable. It has a global orthonormal frame field. u_{1}, u_{2}, u_{3} such that all vector fields can be written

$$
\begin{aligned}
& V=f_{1} u_{1}+f_{2} u_{2}+f_{3} u_{3} \text { and } \\
& \left.\left.u_{i}\right|_{p} \cdot u_{j}\right|_{p}=\delta_{i}^{j}(\text { orthonormal })
\end{aligned}
$$

M is parallelizable means $T M \cong M \times \mathbb{R}^{n}$ and $1 \Longrightarrow 2$.
Why is parallelizable good?
It allows us to express

$$
\begin{gathered}
V: M \rightarrow T M \\
V=v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3} \text { for } v_{1}, v_{2}, v_{3} \in C^{\infty}(M) \\
V \cong\left(v_{1}, v_{2}, v_{3}\right) \in C^{\infty}\left(M, \mathbb{R}^{n}\right)
\end{gathered}
$$

If M is globally covered, $M \xrightarrow{\phi} \mathbb{R}^{n}$ which is diffeomorphism.
Thought Experiment: Suppose $M=S^{2}$. Let V be a vector field on S^{2}.
Theorem 4.1. Every vector field on S^{2} has a point $p \in S^{2}$ such that $W(p)=0$.
An immediate consequence of the theorem is that we cannot have a global orthonormal frame and hence S^{2} is not parallelizable becaue there will always be atleast one point where W is zero and hence can't span the whole of S^{2}. You can always construct local frames: Let (U, ϕ) be a chart of S^{2} about p since

$$
\phi: U \rightarrow \mathbb{R}^{2}
$$

is a diffeomorphism

$$
d \phi_{p}: T_{p} U \rightarrow T_{\phi(p)} \mathbb{R}^{2}
$$

is a linear isomorphism for all $p \in U$. So we can define a pullback frame $\phi^{*}\left(U_{i}\right)$ by

$$
\phi^{*}\left(U_{i}\right)_{p}=d \phi_{\phi(p)}^{-1} U_{i}(p)
$$

where $U_{i}(p)$ is a vector in \mathbb{R}^{2} and $d \phi_{\phi(p)}^{-1}$ is a linear isomorphism $\mathbb{R}^{2} \cong T \mathbb{R}^{2} \rightarrow T_{p} M$. So we can't write W as a vector field on S^{2} as $W=w_{1} u_{1}+w_{2} u_{2}$ with u_{1}, u_{2} vector fields on S^{2}.

Definition 4.2. Let $p \in \mathbb{R}^{3}$ and V, W be tangent vector fields. The covariant derivative of W with respect to V is the tangent vector

$$
\left.\nabla W\right|_{p}=(\bar{W}(p+t v))^{\prime}(0)=\bar{W}_{*}\left(v_{p}\right)
$$

where $\bar{W}=\left(w_{1}(p), w_{2}(p), w_{3}(p)\right)$ and $W=w_{1} u_{1}+w_{2} u_{2}+w_{3} u_{3}$.

$$
\mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

$\nabla:$ Vector Fields(input) \times Vector Fields(direction) \rightarrow Vector Fields Measures initial rate of change of W in the direction of V.
Example 4.3. Let

$$
W=x^{2} u_{1}+y z u_{2} .
$$

$v=(-1,0,2)$ at $p=(2,1,0)$. Then

$$
\begin{aligned}
\left.\nabla_{v} W\right|_{p} & =\left.(-4,2,0)\right|_{(2,1,0)} \\
p+t v & =(2-t, 1,2 t)
\end{aligned}
$$

Then $w_{1}=x^{2}, w_{2}=y z, w_{3}=0$. Therefore,

$$
\begin{aligned}
\bar{W}(p+t v)= & \left((2-t)^{2}, 2 t, 0\right) \\
(\bar{W}(p+t v))^{\prime}(0) & =(-2(2-t), 2,0) \\
& =\left.(-4+2 t, 2,0)\right|_{t=0} \\
& =(-4,2,0)
\end{aligned}
$$

Theorem 4.4. Let W, V, Y, Z be vector fields to \mathbb{R}^{3} and let $f, g \in C^{\infty}\left(\mathbb{R}^{3}\right)$

1. $\nabla_{f V+g W} Y=f \nabla_{V} Y+g \nabla_{W} Y \nabla$
2. $\nabla_{V}(f Y+g Z)=f \nabla_{V} Y+g \nabla_{V} Z$
3. $\nabla_{r} f Y=V[f] Y(p)+f(p) \nabla_{V} Y$
4. $v[Y \cdot Z]=\nabla_{V} Y \cdot Z(p)+Y(p) \nabla_{V}(Z)$

Lemma 4.5. Let $W=\sum w_{i} u_{i}$ be a vector field on \mathbb{R}^{3}, and let $v_{p} \in T_{p} \mathbb{R}^{3}$, then

$$
\nabla_{V} W=\sum_{i=1}^{3} v\left[w_{i}\right] u_{i}(p)
$$

Proof. Recall $V[f]=" \operatorname{grad} f \cdot V "=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} V_{j}$. So

$$
\sum_{i=1}^{3} v\left[w_{i}\right] u_{i}(p)=\sum_{i=1}^{3} \sum_{j=1}^{n} \frac{\partial w_{i}}{\partial x_{j}} v_{j} u_{i}(p)=\left.D \bar{W}\right|_{p}\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left.\bar{W}_{*}\right|_{p}\left(v_{p}\right)=\left.\nabla_{V} W\right|_{p}
$$

