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1 Lecture 1 - Ryan Vaughn - 02/01/2018

Definitions and Notations:

1. R" - n-tuples of points p = (py,...pn) such that p; € R. R?® we distinguish p =
(plap27p3) € R?)’

2. x:R3:— R where x(p) = p; are the coordinate functions.

3. C*R") = {f : R® — R : all partial derivatives of f exist of all orders and are
continuous for all p € R™}.

Example 1.1. Consider the following function f.

_[Fr @n#00
A ’y)_{() at (x,y) = (0,0)

Then f is an example where all partial derivatives exist but the total derivative doesn’t.

Recall:
of
all'i

= lim f

(p+te;) — fp)
pER™ t—0 t

Definition 1.2. Let p € R?, the tangent space at p, T,R? is the set
T,(R*) = {v, = (v,p) : v € R%}

Definition 1.3. A vector field V is a function which maps each point p to a tangent vector

Up-

VR = TR = U T,R?

pER3

Vector fields can be added and multiplied by C'*°(R™) functions.
v+w(p) =v(p) +w(p) VpeR’

fo(p) = f(p)v(p)

Example 1.4. u;(p) = (1,0,0)|, ua(p) = (0,1,0)|,, us(p) = (0,0,1)|,. At each point p,
{u1(p), uz(p), us(p)} form a basis for T,(R*). A frame is a collection of vector fields that
form a basis at each point for the vector fields. This is called the natural frame field. 1t is a
global frame).

Remark: Sometimes tangent vectors are defined as being linear derivations(Lee).

Lemma 1.5. IfV is a vector field in R3, then V can be written uniquely as
V' = viuy + voug + v3uz where vy, vg, v3 : R® = R.

Here v, v9, v3 are called Euclidean Coordinate Functions.
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Smooth or continuous vector fields:

A vector field is smooth iff vy, vy, v3 € C°(R?).
A vector field is continuous iff vy, vy, v3 € CO(R3).

1.1 Directional derivatives :

Definition 1.6. Directional derivatives take in tangent vectors and functions C*°(R?) and
output a real number. Directional derivatives of f in the direction v at point p is denoted

Up(f):}tl_{%f<p+tvt>_f(p) :%f(p—{—tv)

t=0

Lemma 1.7 (pg 12). Let v, = (v1,vq,v3),, then

L9 9
uplf] = sza_ai<p) =v,- Vflp= (afZ

. .
i=1 p>

Remark: Directional derivative is a linear derivation on C*°(R3).
Theorem 1.8. Let f,g € C°(R3) and v,,w, € T,(R?) and a,b € R
Dylaf + bg] = av,|f] + bu,[g]( linear )

2)v,[fg] = v,[flg(p) + f(p)vylg]( derivation )
3)avy, + bup[f] = avp[f] + bw,[f]



2 Lecture 2 - Ryan Vaughn - 01/07/2018

The talk started with highlights from last lecture.

2.1 Curves in R3

Section 1.4 from textbook.
Definition 2.1. A curve a: I — R3 is a smooth function where I is an open interval .
Example 2.2 (Straight line. ). Let p,q € R3.
a(t) =p+tq.
The straightline is based at p in the direction q.
Big point: given a tangent vector v, there exists a straight line
t—p+tv

such that a(0) = p.
Every curve has a natural tangent vector“at each point” along the curve.

Definition 2.3. Velocity of a at tg

do daoy,
a(tO) = (d_tla ) W)

The velocity vector corresponds to a tangent vector V), at a base point p.

Oz(t())

Definition 2.4. Let J be an open interval A : J — I be smooth. We call the curve g = aoh
a reparametrization of a. By the chain rule

_dn

= E . o/(t)

p(t)

t

Note: Another way of defining tangent vectors is as an equivalence class of curves

Vo = lol.
where
1. a(0) = p.
2. o/(0) = v

3. a~ fif &/(0) = (0) ie., [a] =[]



2.2 Mappings

Section 1.7 from textbook.
Overview: Every smooth function (mappings) F' : R™ — R™ induces linear maps

F*p : TpRn — TF(p)Rm.

Definition 2.5. Let F' be as above. If v, € T,(R") , then let F, (v,) be the initial velocity
of the curve ¢t — F(p + tv).

Proposition 2.6. Let F' = (f1,.., fm), F : R" = R™. Then

( the directional derivative at p) .

Fuvp) = (plfi], - wplfm]) = (WAL - vlfm])]

Proof. Let
= F(p+tv).

F,, (v,) =p'(0) = d (fl(p—i-tU) 7fm(p+tv>>

dt
( 1(p + tv), ifm(ertv))
AT

Exercise 1. What is Fi(e1|,) where e; = (1,0,0,...,0)?

e1[fi] S—Q(p)
F*<€1 ) = : :

p

alfl) o \2(p)

This exercise clearly generalizes to the i-th standard basis vector e;. Simply substitute ¢
for 1 in the above.

Writing F, as a matrix. Choose (e;)|, for i € {1,...,n} as a basis for T,(R"), and for
TrpR™(e;)|p@) for j € {1,...,m} . We know

ofj

e; — 8:}01
The ith column of our matrix should be | 2

ox;



Matrix representation of F, at p is the Jacobian J at p.
0 )
L) .o )
J = : . :
Ofm Ofm
) g m)
Definition 2.7. A mapping F' : R" — R™ is regular if F  is one to one for all points p € R".
From linear algebra, the following are equivalent.
1. F,, is one to one.
2. F, (v,) = 0 if and only if v, = 0.
3. The Jacobian at p is rank n where n is the dimension of the domain in F'.

Theorem 2.8 (Inverse Function Theorem). Let F': R™ — R™ be a mapping. If F., is one to
one, there exists open set U C R™ and V' C R™ such that F|, : U — V is bijective, smooth,
and F~'yV — U 1is smooth. In other words, F|y is a diffeomorphism.

Exercise 2. 1. Anything in 1.7. If you choose to do any of 1-4, try to do all of 1-4, since
they are related.

2. Prove the Inverse Function Theorem for R® — R™.

3. Prove that the following three definitions of T,,(R") are isomorphic as vector spaces
over R

(a) Set of ordered pairs (V,p) inR™ x {p}.
(b) Set of linear derivations over R in C*°(R").

(c) Set of equivalence classes of curves with the same initial velocity.



3 Lecture 3 -Problem discussion - 02/14/2018

Exercise 3 (problem 7.6 from book - presented by Michael).  a. Give an example to demon-
strate that a one-to-one and onto mapping need not be a diffeomorphism.

b. Prove that if a one-to-one and onto mapping F : R™ — R"™ is reqular, then it is a
diffeomorphism.

Proof. a. f:R — R. f(z) = 2% Then f~'(z) = 23 and (f7')(z) = —iz7 is
continuous but not.

b. F: R™ — R" is regular and bijective. Then it has a set theoretic inverse F'~! : R* —
R". F., is injective for all p € R™ by regularity. By inverse function theorem, for any
p € R", there exists open U C R™ such that F|y is a diffeomorphism onto its image.
F~Y g is differentiable, so F~! is differentiable everywhere.

O
Exercise 4. If F': R" — R™ is a linear transformation, prove that F.(v,) = F(v)p().
Proof. Let F = (f1,..., fm). Then F(v) = Av where
ayy ... Qip
A =
Am1  --- Qmp
Then f;(v) = agvi + ... + ajpv,. Therefore,
Ofi
= q;
8x1 !
. Therefore
of1 oh
Ox1 Oz
Fu(vp) = Jp(vp) = : . =A
Ofm Ofm
ox1 T Oy
O



4 Lecture 4 - Ryan Vaughn - 02/21/2018

4.1 The Covariant Derivative in R?

Note: This chapter heavily relies on properties of R? as opposed to general manifold M of
dimension n.

1. R? has a global chart

2. R3 is parallelizable. It has a global orthonormal frame field. wu;,us,us such that all
vector fields can be written

V= f1U1 + fz'lLQ + f3U3 and
i, - u;], = 07 ( orthonormal)

M is parallelizable means TM = M x R" and 1 = 2.
Why is parallelizable good?
It allows us to express

VieM—TM

V' = vjuy + voug + vsug for vy, ve, v3 € C°(M)

V = (Ul,UQ,US) c COO(M7 Rn)

If M is globally covered, M 2, R" which is diffeomorphism.

Thought Experiment: Suppose M = S2. Let V be a vector field on S2.
Theorem 4.1. Every vector field on S* has a point p € S? such that W (p) = 0.

An immediate consequence of the theorem is that we cannot have a global orthonormal
frame and hence S? is not parallelizable becaue there will always be atleast one point where
W is zero and hence can’t span the whole of S?. You can always construct local frames:
Let (U, ¢) be a chart of S? about p since

¢:U — R?

is a diffeomorphism
d(ﬁP : TpU — T¢(p)R2

is a linear isomorphism for all p € U. So we can define a pullback frame ¢*(U;) by
(b*(Ui)p = déb;ép)Ui(p)

where U;(p) is a vector in R? and dgzﬁ;(lp) is a linear isomorphism R? & TR? — T, M.

So we can’t write W as a vector field on S? as W = wju; + wyus with wuq, us vector fields on
S2.



Definition 4.2. Let p € R and V, W be tangent vector fields. The covariant derivative of
W with respect to V is the tangent vector
VWl = (W(p+tv))(0) = W.(v,)

where W = (w1(p), wa(p), ws(p)) and W = wyuy + wous + wzus.

X(M) x X(M) — X(M)
W/ : Vector Fields(input) x Vector Fields(direction) — Vector Fields
Measures initial rate of change of W in the direction of V.

Example 4.3. Let
W = z%uy + YZUs.

v=(-1,0,2) at p=(2,1,0). Then

VUW = (_47270)

P
p+tv=(2—1,1,2t)

Then w; = 2%, wy = yz, ws = 0. Therefore,

(2,1,0)

W(p+tv) = ((2 — 12,2, 0)

(W(p +10))(0) = (— 2(2 — 1), 2,0)
= (—4+2t,2,0)|,_,
= (—4,2,0)
Theorem 4.4. Let W, V.Y, Z be vector fields to R® and let f,g € C°(R?)
L pvagwY = fvY +g9gvw YV
2. wv(fY+ygZ)=fwvY+gvvZ
3. fY =VIIY(p) + f(p) wvY
4. oY - Z] =vY - Z(p) + Y (p) Vv (Z)
Lemma 4.5. Let W = > w;u; be a vector field on R3, and let v, € T,R?, then

W = ofwiui(p)

i=1

Proof. Recall V[f| ="grad f-V" =" %Vj_ So
j=1""

Zv[wi]ui(p) = Z Z g—gvjui(p) =DW| || =W, p(vp) =W ,
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