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1 Lecture 1 - Ryan Vaughn - 02/01/2018

Definitions and Notations:

1. Rn - n-tuples of points p = (p1, ...pn) such that pi ∈ R. R3 we distinguish p =
(p1, p2, p3) ∈ R3,

2. x : R3 :→ R where x(p) = p1 are the coordinate functions.

3. C∞(Rn) = {f : Rn → R : all partial derivatives of f exist of all orders and are
continuous for all p ∈ Rn}.

Example 1.1. Consider the following function f .

f(x, y) =

{
xy

x2+y2
(x, y) 6= (0, 0)

0 at (x, y) = (0, 0)

Then f is an example where all partial derivatives exist but the total derivative doesn’t.

Recall:
∂f

∂xi

∣∣∣∣
p∈Rn

= lim
t→0

f
(p+ tei)− f(p)

t

Definition 1.2. Let p ∈ R3, the tangent space at p, TpR3 is the set

Tp(R3) = {vp = (v, p) : v ∈ R3}

Definition 1.3. A vector field V is a function which maps each point p to a tangent vector
vp.

V : R3 → TR3 =
⋃
p∈R3

TpR3

Vector fields can be added and multiplied by C∞(Rn) functions.

v + w(p) = v(p) + w(p) ∀ p ∈ R3.

fv(p) = f(p)v(p)

Example 1.4. u1(p) = (1, 0, 0)|p u2(p) = (0, 1, 0)|p, u3(p) = (0, 0, 1)|p. At each point p,
{u1(p), u2(p), u3(p)} form a basis for Tp(R3). A frame is a collection of vector fields that
form a basis at each point for the vector fields. This is called the natural frame field. It is a
global frame).

Remark: Sometimes tangent vectors are defined as being linear derivations(Lee).

Lemma 1.5. If V is a vector field in R3, then V can be written uniquely as

V = v1u1 + v2u2 + v3u3 where v1, v2, v3 : R3 → R.

Here v1, v2, v3 are called Euclidean Coordinate Functions.
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Smooth or continuous vector fields:

A vector field is smooth iff v1, v2, v3 ∈ C∞(R3).
A vector field is continuous iff v1, v2, v3 ∈ C0(R3).

1.1 Directional derivatives :

Definition 1.6. Directional derivatives take in tangent vectors and functions C∞(R3) and
output a real number. Directional derivatives of f in the direction v at point p is denoted

vp(f) = lim
t→0

f(p+ tv)− f(p)

t
=

d

dt
f(p+ tv)

∣∣∣∣
t=0

.

Lemma 1.7 (pg 12). Let vp = (v1, v2, v3)p, then

vp[f ] =
3∑
i=1

vi
∂f

∂xi
(p) = vp · 5f |p =

(
∂f

∂xi

∣∣∣∣
p

)
.

Remark: Directional derivative is a linear derivation on C∞(R3).

Theorem 1.8. Let f, g ∈ C∞(R3) and vp, wp ∈ Tp(R3) and a, b ∈ R

1)vp[af + bg] = avp[f ] + bvp[g]( linear )

2)vp[fg] = vp[f ]g(p) + f(p)vp[g]( derivation )

3)avp + bvp[f ] = avp[f ] + bwp[f ]
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2 Lecture 2 - Ryan Vaughn - 01/07/2018

The talk started with highlights from last lecture.

2.1 Curves in R3

Section 1.4 from textbook.

Definition 2.1. A curve α : I → R3 is a smooth function where I is an open interval .

Example 2.2 (Straight line. ). Let p, q ∈ R3.

α(t) = p+ tq.

The straightline is based at p in the direction q.

Big point: given a tangent vector vp there exists a straight line

t 7→ p+ tv

such that α(0) = p.
Every curve has a natural tangent vector“at each point” along the curve.

Definition 2.3. Velocity of α at t0

α(t0) =

(
dα1

dt
, ...,

dαn
dt

)∣∣∣∣∣
α(t0)

The velocity vector corresponds to a tangent vector Vp at a base point p.

Definition 2.4. Let J be an open interval h : J → I be smooth. We call the curve β = α◦h
a reparametrization of α. By the chain rule

β′(t) =
dh

dt

∣∣∣∣∣
t

· α′(t)

Note: Another way of defining tangent vectors is as an equivalence class of curves

Vp = [α].

where

1. α(0) = p.

2. α′(0) = v

3. α ∼ β if α′(0) = β′(0) i.e., [α] = [β].
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2.2 Mappings

Section 1.7 from textbook.
Overview: Every smooth function (mappings) F : Rn → Rm induces linear maps

F∗p : TpRn → TF (p)Rm.

Definition 2.5. Let F be as above. If vp ∈ Tp(Rn) , then let F∗p(vp) be the initial velocity
of the curve t 7→ F (p+ tv).

Proposition 2.6. Let F = (f1, .., fm), F : Rn → Rm. Then

F∗(vp) = (vp[f1], .., vp[fm]) = (v[f1], .., v[fm])
∣∣∣
p
( the directional derivative at p) .

Proof. Let
β = F (p+ tv).

F∗p(vp) = β′(0) =
d

dt

(
f1(p+ tv), ..., fm(p+ tv)

)

=

(
d

dt
f1(p+ tv), ...,

d

dt
fm(p+ tv)

)

=

(
vp[f1], .., vp[fm]

)

Exercise 1. What is F∗(e1|p) where e1 = (1, 0, 0, ..., 0)?

F∗(e1p) =

e1[f1]...
e1[fn]

∣∣∣∣∣
p

=


∂f1
∂x1

(p)
...

∂fm
∂x1

(p)


This exercise clearly generalizes to the i-th standard basis vector ei. Simply substitute i

for 1 in the above.
Writing F∗ as a matrix. Choose (ei)|p for i ∈ {1, ..., n} as a basis for Tp(Rn), and for

TF (p)Rm(ej)|F (p) for j ∈ {1, ...,m} . We know

ei 7→


...
∂fj
∂xi
...



The ith column of our matrix should be


...
∂fj
∂xi
...

.
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Matrix representation of F∗ at p is the Jacobian J at p.

J =


∂f1
∂x1

(p) . . . ∂f1
∂xn

(p)
...

. . .
...

∂fm
∂x1

(p) . . . ∂fm
∂xn

(p)


Definition 2.7. A mapping F : Rn → Rm is regular if F∗p is one to one for all points p ∈ Rn.

From linear algebra, the following are equivalent.

1. F∗p is one to one.

2. F∗p(vp) = 0 if and only if vp = 0.

3. The Jacobian at p is rank n where n is the dimension of the domain in F .

Theorem 2.8 (Inverse Function Theorem). Let F : Rn → Rm be a mapping. If F∗p is one to
one, there exists open set U ⊆ Rn and V ⊆ Rm such that F |u : U → V is bijective, smooth,
and F−1|V V → U is smooth. In other words, F |U is a diffeomorphism.

Exercise 2. 1. Anything in 1.7. If you choose to do any of 1-4, try to do all of 1-4, since
they are related.

2. Prove the Inverse Function Theorem for Rn → Rn.

3. Prove that the following three definitions of Tp(Rn) are isomorphic as vector spaces
over R

(a) Set of ordered pairs (V, p) inRn × {p}.
(b) Set of linear derivations over R in C∞(Rn).

(c) Set of equivalence classes of curves with the same initial velocity.
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3 Lecture 3 -Problem discussion - 02/14/2018

Exercise 3 (problem 7.6 from book - presented by Michael). a. Give an example to demon-
strate that a one-to-one and onto mapping need not be a diffeomorphism.

b. Prove that if a one-to-one and onto mapping F : Rn → Rn is regular, then it is a
diffeomorphism.

Proof. a. f : R → R. f(x) = x3. Then f−1(x) = x1/3 and (f−1)′(x) = −1
3
x

−2
3 is

continuous but not.

b. F : Rn → Rn is regular and bijective. Then it has a set theoretic inverse F−1 : Rn →
Rn. F∗p is injective for all p ∈ Rn by regularity. By inverse function theorem, for any
p ∈ Rn, there exists open U ⊂ Rn such that F |U is a diffeomorphism onto its image.
F−1|F (U) is differentiable, so F−1 is differentiable everywhere.

Exercise 4. If F : Rn → Rm is a linear transformation, prove that F∗(vp) = F (v)F (p).

Proof. Let F = (f1, ..., fm). Then F (v) = Av where

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 .

Then fi(v) = ai1v1 + . . .+ ainvn. Therefore,

∂fi
∂x1

= ai1

. Therefore

F∗(vp) = Jp(vp) =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 = A
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4 Lecture 4 - Ryan Vaughn - 02/21/2018

4.1 The Covariant Derivative in R3

Note: This chapter heavily relies on properties of R3 as opposed to general manifold M of
dimension n.

1. R3 has a global chart

2. R3 is parallelizable. It has a global orthonormal frame field. u1, u2, u3 such that all
vector fields can be written

V = f1u1 + f2u2 + f3u3 and

ui|p · uj|p = δji ( orthonormal)

M is parallelizable means TM ∼= M × Rn and 1 =⇒ 2.
Why is parallelizable good?
It allows us to express

V : M → TM

V = v1u1 + v2u2 + v3u3 for v1, v2, v3 ∈ C∞(M)

V ∼= (v1, v2, v3) ∈ C∞(M,Rn)

If M is globally covered, M
φ−→ Rn which is diffeomorphism.

Thought Experiment: Suppose M = S2. Let V be a vector field on S2.

Theorem 4.1. Every vector field on S2 has a point p ∈ S2 such that W (p) = 0.

An immediate consequence of the theorem is that we cannot have a global orthonormal
frame and hence S2 is not parallelizable becaue there will always be atleast one point where
W is zero and hence can’t span the whole of S2. You can always construct local frames:
Let (U, φ) be a chart of S2 about p since

φ : U → R2

is a diffeomorphism
dφp : TpU → Tφ(p)R2

is a linear isomorphism for all p ∈ U . So we can define a pullback frame φ∗(Ui) by

φ∗(Ui)p = dφ−1φ(p)Ui(p)

where Ui(p) is a vector in R2 and dφ−1φ(p) is a linear isomorphism R2 ∼= TR2 → TpM .

So we can’t write W as a vector field on S2 as W = w1u1 +w2u2 with u1, u2 vector fields on
S2.
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Definition 4.2. Let p ∈ R3 and V,W be tangent vector fields. The covariant derivative of
W with respect to V is the tangent vector

5W |p = (W (p+ tv))′(0) = W ∗(vp)

where W = (w1(p), w2(p), w3(p)) and W = w1u1 + w2u2 + w3u3.

X(M)× X(M)→ X(M)

5 : Vector Fields(input) × Vector Fields(direction) → Vector Fields

Measures initial rate of change of W in the direction of V .

Example 4.3. Let
W = x2u1 + yzu2.

v = (−1, 0, 2) at p = (2, 1, 0). Then

5vW
∣∣∣
p

= (−4, 2, 0)
∣∣∣
(2,1,0)

p+ tv = (2− t, 1, 2t)
Then w1 = x2, w2 = yz, w3 = 0. Therefore,

W (p+ tv) =
(

(2− t)2, 2t, 0
)

(
W (p+ tv)

)′
(0) =

(
− 2(2− t), 2, 0

)
= (−4 + 2t, 2, 0)

∣∣
t=0

= (−4, 2, 0)

Theorem 4.4. Let W,V, Y, Z be vector fields to R3 and let f, g ∈ C∞(R3)

1. 5fV+gWY = f 5V Y + g5W Y5

2. 5V (fY + gZ) = f 5V Y + g5V Z

3. 5rfY = V [f ]Y (p) + f(p)5V Y

4. v[Y · Z] = 5V Y · Z(p) + Y (p)5V (Z)

Lemma 4.5. Let W =
∑
wiui be a vector field on R3, and let vp ∈ TpR3, then

5VW =
3∑
i=1

v[wi]ui(p)

Proof. Recall V [f ] = ”grad f · V ” =
n∑
j=1

∂f
∂xj
Vj. So

3∑
i=1

v[wi]ui(p) =
3∑
i=1

n∑
j=1

∂wi
∂xj

vjui(p) = DW
∣∣∣
p

v1v2
v3

 = W ∗

∣∣∣
p
(vp) = 5VW

∣∣∣
p
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