Differential Geometry Reading Group Exercises

February 21, 2018

Chapter 1

Book Exercises

Extra Problems

Note that in these exercises, we denote the i-th projection function by using a superscript x^{i} instead of x_{i}. This is a convention in some differential geometry textbooks, because it allows us to use Einstein notation, which is useful when you deal with lots of sums.

1. Let $p \in \mathbb{R}^{n}$ be fixed and define $T_{p} \mathbb{R}^{n}=\left\{v_{p}=(v, p): v \in \mathbb{R}^{n}\right\}$. We see that $T_{p} \mathbb{R}^{n}$ is a vector space of dimension n by addition and scalar multiplication of vectors.
Let \mathcal{V}_{p} be the set of functions $v: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ such that for any $c \in \mathbb{R}$ and $f, g \in C^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
v(c f+g) & =c v(f)+v(g) \\
v(f g) & =f(p) v(g)+v(f) g(p)
\end{aligned}
$$

The set \mathcal{V}_{p} is also a vector space, since real-valued functions can be added and multiplied by a scalar. Show that $T_{p} \mathbb{R}^{n}$ and \mathcal{V}_{p} are isomorphic as vector spaces.
Hint: Note that $\frac{\partial}{\partial x^{i}} \in \mathcal{V}_{p}$. Show that the set $\left\{\frac{\partial}{\partial x^{i}}\right\}_{i=1}^{n}$ is a basis for \mathcal{V}_{p}. Then construct the linear isomorphism by mapping $e_{i} \mapsto \frac{\partial}{\partial x^{i}}$ and extending linearly.
Proof. We first show that the set $X=\left\{\frac{\partial}{\partial x^{i}}\right\}_{i=1}^{n}$ is linearly independent in \mathcal{V}_{p}. Let $c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that

$$
c_{1} \frac{\partial}{\partial x^{1}}+\ldots+c_{n} \frac{\partial}{\partial x^{n}}=\mathbf{0} .
$$

This means that for all $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$:

$$
c_{1} \frac{\partial f}{\partial x^{1}}+\ldots+c_{n} \frac{\partial f}{\partial x^{n}}=0 .
$$

Recall that for each $i \in\{1, \ldots, n\}$ we have the i-th projection function $x^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ mapping a vector $p \in \mathbb{R}^{n}$ to it's i-th component value. If we plug in $x^{1} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ to the above, we obtain:

$$
\begin{aligned}
c_{1} \frac{\partial x^{1}}{\partial x^{1}}+\ldots+c_{n} \frac{\partial x^{1}}{\partial x^{n}} & =0 \\
c_{1} \frac{\partial x^{1}}{\partial x^{1}}+0+\ldots+0 & =0 \\
c_{1}+0+\ldots+0 & =0
\end{aligned}
$$

Noticing that this argument holds for any x^{i}, we can repeat the procedure for all $i \in\{1, \ldots, n\}$ to show that $c_{i}=0$ for all $i \in\{1, \ldots, n\}$. Hence, if there exists a collection of c_{i} 's for which

$$
c_{1} \frac{\partial}{\partial x^{1}}+\ldots+c_{n} \frac{\partial}{\partial x^{n}}=\mathbf{0}
$$

then they all must be zero and so the set X is linearly independent.
Now, we must show that X spans \mathcal{V}_{p}. To do so, we use Taylor's theorem in \mathbb{R}^{n}, as well as an additional lemma (both of which are proven in Lee's Smooth Manifolds.)

First, we set some notation. Let $I=\left(i_{1}, \ldots, i_{m}\right)$ be a m-tuple of indices with $1 \leq m \leq n$ and we say $|I|=m$ to denote the number of indices in I. Define

$$
\begin{gathered}
\partial_{I}=\frac{\partial^{m}}{\partial x^{i_{1}}, \ldots, \partial^{x_{m}^{i}}} \\
(x-a)^{I}=\left(x^{i_{1}}-a^{i_{1}}\right) \ldots\left(x^{i_{m}}-a^{i_{m}}\right)
\end{gathered}
$$

Theorem 1. Let $U \subseteq \mathbb{R}^{n}$ be an open subset and let $a \in U$ be fixed. suppose that $f \in C^{k+1}(U)$ for some $k \geq 0$. If W is any convex subset of U containing a, then for all $x \in W$,

$$
f(x)=P_{k}(x)+R_{k}(x)
$$

where P_{k} is the \boldsymbol{k}-th order Taylor polynomial of \boldsymbol{f} at a, defined by:

$$
P_{k}(x)=f(a)+\sum_{m=1}^{k} \frac{1}{m!} \sum_{I:|I|=m} \partial_{I} f(a)(x-a)^{I}
$$

and R_{k} is the k-th remainder term, given by

$$
R_{k}(x)=\frac{1}{k!} \sum_{I:|I|=k+1}(x-a)^{I} \int_{0}^{1}(1-t)^{k} \partial_{I} f(a+t(x-a)) d t
$$

Lemma 1. Let $p \in \mathbb{R}^{n}, v \in \mathcal{V}_{p}$, and $f, g \in C^{\infty}\left(\mathbb{R}^{n}\right)$.

1. If f is a constant function, then $v(f)=0$.
2. If $f(p)=g(p)=0$, then $v(f g)=0$

Proof. It suffices to prove i for the constant function $f_{1}(x) \equiv 1$, for then $f(x) \equiv c$ implies $v(f)=v\left(c f_{1}\right)=$ $\operatorname{cv}\left(f_{1}\right)=0$. For f_{1}, we have:

$$
v\left(f_{1}\right)=v\left(f_{1} f_{1}\right)=f_{1}(p) v\left(f_{1}\right)+v\left(f_{1}\right) f_{1}(p)=2 v\left(f_{1}\right)
$$

and so $v\left(f_{1}\right)=0$. Similarly, for $i i$, we use the product rule:

$$
v(f g)=f(p) v(g)+v(f) g(p)=0+0=0
$$

Now, to show that X spans \mathcal{V}_{p}, we let $v \in \mathcal{V}_{p}$, and let $f \in c^{\infty}\left(R^{n}\right)$. Then by Taylor's theorem for $k=1$ and $a=p$, we have that

$$
v(f)=v\left(P_{1}+R_{1}\right)=v\left(P_{1}\right)+v\left(R_{1}\right)
$$

Notice that

$$
R_{1}=\sum_{i, j=1}^{n}\left(x^{i}-p^{i}\right)\left(x^{j}-p^{j}\right) \int_{0}^{1}(1-t) \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(p+t(x-p)) d t
$$

is the sum of products of two functions which are equal to 0 when we plug in $x=p$. The first function is

$$
g_{i}(x)=x^{i}-p^{i}
$$

the second is

$$
h_{j}(x)=\left(x^{j}-p^{j}\right) \int_{0}^{1}(1-t) \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(p+t(x-p)) d t
$$

times the integral. Note that for any i or j, if we plug in $x=p$ to g_{i} or h_{j} we obtain 0 . Hence, using the second part of the lemma, we see that $R_{1}=\sum_{i, j=1}^{n} g_{i} h_{j}$ for which $g_{i}(p)=h_{j}(p)=0$ so $v\left(R_{1}\right)=0$.

Now, looking at $v\left(P_{1}\right)$, we see that

$$
\begin{aligned}
v\left(P_{1}\right) & =v\left(f(p)+\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p)\left(x^{i}-p^{i}\right)\right) \\
& =v(f(p))+\sum_{i=1}^{n} v\left(\frac{\partial f}{\partial x^{i}}(p)\left(x^{i}-p^{i}\right)\right) \\
& =v(f(p))+\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p) v\left(x^{i}\right)-\frac{\partial f}{\partial x^{i}}(p) v\left(p^{i}\right) \\
& =0+\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p) v\left(x^{i}\right)-0 \\
& =\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p) v\left(x^{i}\right)
\end{aligned}
$$

We have finally shown that $v(f)=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p) v\left(x^{i}\right)$. We simply re-interpret the sum, since $\left.\frac{\partial}{\partial x^{i}}\right|_{p}$ is an element of \mathcal{V}_{p}, so we let $v\left(x^{i}\right)$ be the coefficients and $\left.\frac{\partial}{\partial x^{i}}\right|_{p}$ be the elements of \mathcal{V}_{p}. Hence, we have:

$$
v(f)=\left.\sum_{i=1}^{n} v\left(x^{i}\right) \frac{\partial}{\partial x^{i}}\right|_{p}(f) .
$$

Since v is arbitrary, we see that the set $X=\left\{\frac{\partial}{\partial x^{i}}\right\}_{i=1}^{n}$ spans \mathcal{V}_{p} and thus is a basis. Hence, $T_{p}\left(\mathbb{R}^{n}\right) \cong \mathcal{V}_{p}$ by mapping

$$
\left(e_{i}\right)_{p} \mapsto \frac{\partial}{\partial x^{i}}
$$

and extending the map linearly.

