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Chapter 1
Book Exercises

Extra Problems
Note that in these exercises, we denote the i-th projection function by using a superscript xi instead of xi.
This is a convention in some differential geometry textbooks, because it allows us to use Einstein notation,
which is useful when you deal with lots of sums.

1. Let p ∈ Rn be fixed and define TpRn = {vp = (v, p) : v ∈ Rn}. We see that TpRn is a vector space of
dimension n by addition and scalar multiplication of vectors.
Let Vp be the set of functions v : C∞(Rn)→ R such that for any c ∈ R and f, g ∈ C∞(Rn),

v(cf + g) = cv(f) + v(g)
v(fg) = f(p)v(g) + v(f)g(p).

The set Vp is also a vector space, since real-valued functions can be added and multiplied by a scalar.
Show that TpRn and Vp are isomorphic as vector spaces.
Hint: Note that ∂

∂xi ∈ Vp. Show that the set
{

∂
∂xi

}n

i=1 is a basis for Vp. Then construct the linear
isomorphism by mapping ei 7→ ∂

∂xi and extending linearly.

Proof. We first show that the set X =
{

∂
∂xi

}n

i=1 is linearly independent in Vp. Let c1, ..., cn ∈ R such that

c1
∂

∂x1 + ... + cn
∂

∂xn
= 0.

This means that for all f ∈ C∞(Rn):

c1
∂f

∂x1 + ... + cn
∂f

∂xn
= 0.

Recall that for each i ∈ {1, ..., n} we have the i-th projection function xi : Rn → R mapping a vector
p ∈ Rn to it’s i-th component value. If we plug in x1 ∈ C∞(Rn) to the above, we obtain:

c1
∂x1

∂x1 + ... + cn
∂x1

∂xn
= 0

c1
∂x1

∂x1 + 0 + ... + 0 = 0

c1 + 0 + ... + 0 = 0.

Noticing that this argument holds for any xi, we can repeat the procedure for all i ∈ {1, ..., n} to show
that ci = 0 for all i ∈ {1, ..., n}. Hence, if there exists a collection of ci’s for which

c1
∂

∂x1 + ... + cn
∂

∂xn
= 0,
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then they all must be zero and so the set X is linearly independent.

Now, we must show that X spans Vp. To do so, we use Taylor’s theorem in Rn, as well as an additional
lemma (both of which are proven in Lee’s Smooth Manifolds.)

First, we set some notation. Let I = (i1, ..., im) be a m-tuple of indices with 1 ≤ m ≤ n and we say
|I| = m to denote the number of indices in I. Define

∂I = ∂m

∂xi1 , ..., ∂xi
m

(x− a)I = (xi1 − ai1)...(xim − aim)

Theorem 1. Let U ⊆ Rn be an open subset and let a ∈ U be fixed. suppose that f ∈ Ck+1(U) for some
k ≥ 0. If W is any convex subset of U containing a, then for all x ∈W ,

f(x) = Pk(x) + Rk(x)

where Pk is the k-th order Taylor polynomial of f at a, defined by:

Pk(x) = f(a) +
k∑

m=1

1
m!

∑
I:|I|=m

∂If(a)(x− a)I ,

and Rk is the k-th remainder term, given by

Rk(x) = 1
k!

∑
I:|I|=k+1

(x− a)I

∫ 1

0
(1− t)k∂If

(
a + t(x− a)

)
dt.

Lemma 1. Let p ∈ Rn, v ∈ Vp, and f, g ∈ C∞(Rn).

1. If f is a constant function, then v(f) = 0.

2. If f(p) = g(p) = 0, then v(fg) = 0

Proof. It suffices to prove i for the constant function f1(x) ≡ 1, for then f(x) ≡ c implies v(f) = v(cf1) =
cv(f1) = 0. For f1, we have:

v(f1) = v(f1f1) = f1(p)v(f1) + v(f1)f1(p) = 2v(f1)

and so v(f1) = 0. Similarly, for ii, we use the product rule:

v(fg) = f(p)v(g) + v(f)g(p) = 0 + 0 = 0.

Now, to show that X spans Vp, we let v ∈ Vp, and let f ∈ c∞(Rn). Then by Taylor’s theorem for k = 1
and a = p, we have that

v(f) = v(P1 + R1) = v(P1) + v(R1).

Notice that

R1 =
n∑

i,j=1
(xi − pi)(xj − pj)

∫ 1

0
(1− t) ∂2f

∂xi∂xj
(p + t(x− p))dt

is the sum of products of two functions which are equal to 0 when we plug in x = p. The first function is

gi(x) = xi − pi,

the second is
hj(x) = (xj − pj)

∫ 1

0
(1− t) ∂2f

∂xi∂xj
(p + t(x− p))dt
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times the integral. Note that for any i or j, if we plug in x = p to gi or hj we obtain 0. Hence, using the
second part of the lemma, we see that R1 =

∑n
i,j=1 gihj for which gi(p) = hj(p) = 0 so v(R1) = 0.

Now, looking at v(P1), we see that

v(P1) = v

(
f(p) +

n∑
i=1

∂f

∂xi
(p)(xi − pi)

)

= v (f(p)) +
n∑

i=1
v

(
∂f

∂xi
(p)(xi − pi)

)

= v (f(p)) +
n∑

i=1

∂f

∂xi
(p)v(xi)− ∂f

∂xi
(p)v(pi)

= 0 +
n∑

i=1

∂f

∂xi
(p)v(xi)− 0

=
n∑

i=1

∂f

∂xi
(p)v(xi)

We have finally shown that v(f) =
∑n

i=1
∂f
∂xi (p)v(xi). We simply re-interpret the sum, since ∂

∂xi |p is an
element of Vp, so we let v(xi) be the coefficients and ∂

∂xi |p be the elements of Vp. Hence, we have:

v(f) =
n∑

i=1
v(xi) ∂

∂xi

∣∣∣
p
(f).

Since v is arbitrary, we see that the set X =
{

∂
∂xi

}n

i=1 spans Vp and thus is a basis. Hence, Tp(Rn) ∼= Vp

by mapping
(ei)p 7→

∂

∂xi

and extending the map linearly.
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