The Hodge Decomposition Theorem

Ryan Vaughn

March 29, 2019

The Hodge Decomposition Theorem

Theorem
Let (M, g) be a compact, Riemannian manifold. Then for each $k=1, \ldots, n$, the Hilbert space $\Omega^{k}(M)$ of differential k-forms on M admits an orthonormal decomposition:

$$
\Omega^{k}(M)=\operatorname{im} d \oplus \operatorname{im} \delta \oplus \operatorname{ker} \Delta_{k} .
$$

Where d denotes the exterior derivative, δ denotes the codifferential, and $\Delta_{k}=d \delta+\delta d$ is the Hodge Laplacian on M.

Corollary
$H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)$

Motivation

- Topological information (De Rham Cohomology Groups) of M can be inferred by knowing the kernel of the k-Laplacian Δ_{k}.
- In the case $k=0$ (and sometimes $k=1$), the spectrum of Δ_{k} can be inferred from finite data sampled from M.
- One of the goals for my dissertation is to find a way to infer for $k>0$.

Overview

- Introduction to differential forms.
- Define common operations $\wedge, *$, on differential forms
- Define the exterior derivative d as well as the codifferential δ.
- Construct the Hodge Laplacian $\Delta=d \delta+\delta d$
- Define the De Rham Cohomology groups $H^{k}(M)$.

We will see how the Hodge Decomposition Theorem tells us that

$$
H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)
$$

Smooth manifolds

Let M be a smooth manifold of dimension n.

- Hausdorff, second countable topological space that is locally homeomorphic to \mathbb{R}^{n}.
- Equipped with a smooth structure, so one can define smooth functions on M.
Examples: \mathbb{R}^{n}, spheres, torus

Tangent Spaces

For each point $p \in M$, one can define the tangent space at p denoted $T_{p} M$, which is a dimension n vector space.

Given a smooth map $f: M \rightarrow N$, we obtain linear maps $d f_{p}: T_{p} M \rightarrow T_{f(p)} N$ on each of the tangent spaces.

Riemannian Manifolds

- A Riemannian manifold (M, g) is a smooth manifold together with a choice of inner product $\langle\cdot, \cdot\rangle_{g}$ on each tangent space $T_{p} M$.
- This allows us to measure lengths and angles of vectors in each tangent space, as well as the lengths of curves $\gamma:[a, b] \rightarrow M$.

Differential Forms

Let M be a smooth manifold of dimension n :

- A differential n-form on M is like choosing a determinant on each tangent space $T_{p} M$.

- The determinant is multilinear.
- The determinant is alternating: If I plug in a set of linearly dependent vectors v_{1}, \ldots, v_{n}, then the determinant is zero.

Differential Forms

Let M be a smooth manifold of dimension n :

- Formally, a differential n-form ω is a choice of alternating, multilinear map

$$
\omega_{p}: T_{p} M \times \ldots \times T_{p} M \rightarrow \mathbb{R}
$$

for each $p \in M$. Meaning that ω_{p} is zero whenever a linearly dependent set of vectors is inputted. We also require ω_{p} to vary smoothly across M a function of p.

- Intuitively, this is a way to measure "volume" in each tangent space.

The Riemannian Volume Form

Now let (M, g) be an (orientable) Riemannian manifold of dimension n.

- There is an obvious choice for an n-form.
- If we take an orthonormal set $\left\{v_{1}, . ., v_{n}\right\}$ of vectors in $T_{p} M$, the hypercube spanned by the vectors "should" have volume 1.
- There exists a unique n-form on M with this property, called the Riemannian volume form, denoted V_{g}.
- V_{g} is the differential form that assigns unit volume to unit hypercubes in each $T_{p} M$.

k-forms

Now M be a manifold of dimension n and let $k<n$.

- Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for $T_{p} M$.
- Example: Let $v_{1}, v_{2} \in T_{p} M$ and Denote $e^{1} \wedge e^{2}\left(v_{1}, v_{2}\right)$ as the $2-d$ volume of the square formed by projecting v_{1} and v_{2} onto the subspace formed by e_{1} and e_{2}.
- $e^{1} \wedge e^{2}$ is a 2 -form. (Assuming we construct it across all $T_{p} M$.)

k-forms

- For any choice of k unique basis vectors $\left\{e_{i_{1}}, \ldots, e_{i_{k}}\right\}$, I can define $e^{i_{1}} \wedge \ldots \wedge e^{i_{k}}$ in the same manner to measure the k dimensional area of vectors in the subspace spanned by $e_{i_{1}}, \ldots, e_{i_{k}}$.
- For technical reasons, we always choose i_{k} to be strictly increasing.
- Each such $e^{i_{1}} \wedge \ldots \wedge e^{i_{k}}$ can be added and scalar multiplied.

k-forms

- A differential k-form ω can be written as:

$$
\omega=\sum_{I=\left(i_{1}, \ldots, i_{k}\right)} f_{l} e^{l}
$$

where $e^{l}=e^{i_{1}} \wedge . . \wedge e^{i_{k}}$ and $f_{l}: M \rightarrow \mathbb{R}$ is smooth. (The f_{l} represent a choice of linear constants for each fixed $T_{p} M$ that varies smoothly across M.)

- The set of all differential k-forms on a manifold M is denoted $\Omega^{k}(M)$.

k-forms

The set $\Omega^{k}(M)$ is $\binom{n}{k}$ dimensional over $C^{\infty} M$.

- There are $\binom{n}{k}$ ways to select e^{\prime}, and the set of e^{\prime} are a pointwise basis for $\Omega^{k}(M)$.
- Functions in $C^{\infty}(M)$ denote a way to choose linear constants over each $T_{p} M$.
- In the case $k=0$, we define $\Omega^{0}(M)=C^{\infty}(M)$.

The Exterior Derivative

- The Exterior derivative d_{k} maps k-forms to $k+1$ forms.
- The Fundamental Theorem of Calculus exists on manifolds, and is stated in terms of d (Stokes' Theorem).

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

The Exterior Derivative

- When $k=0$, a differential form is simply a smooth function $f: M \rightarrow \mathbb{R}$. This induces a linear map on tangent spaces:

$$
d f_{p}: T_{p} M \rightarrow T_{f(p)} \mathbb{R}=\mathbb{R}
$$

- $d f_{p}$ is 1-multilinear, alternating, and varies smoothly as a function of p. Thus, it is a 1 -form!

The Exterior Derivative

- If ω is a k-form and we write:

$$
\omega=\sum_{I=\left(i_{1}, \ldots, i_{k}\right)} f_{l} e^{l}
$$

then we define $d \omega$ as:

$$
d \omega=\sum_{I=\left(i_{1}, \ldots, i_{k}\right)} d f_{l} \wedge e^{\prime}
$$

- We take the 0 -form f_{l}, make it into a 1 -form, then "glue" it to e^{l} with the wedge product, making a $k+1$ form.

The Exterior Derivative

- In practice, we need to know more algebra to compute $d \omega$.
- Fun Facts:

1. If f is a constant function, $d f=0$.
2. d is linear over \mathbb{R}.
3. $d_{k+1}\left(d_{k} \omega\right)=0$ for any $\omega \in \Omega^{k}(M)$.

$$
d \circ d=0 .
$$

De Rham Cohomology

- $d_{k+1}\left(d_{k} \omega\right)=0$ implies that ker $d_{k+1} \subseteq \operatorname{im} d_{k}$.
- Define

$$
H_{d R}^{k}(M)=\frac{\operatorname{ker} d_{k+1}}{\operatorname{im} d_{k}}
$$

- $H_{d R}^{k}(M)$ is a (possibly infinite-dimensional) vector space over \mathbb{R}, called the k-th de Rham Cohomology group of M.
- The dimension of $H_{d R}^{k}(M)$ roughly counts the number of k-dimensional holes in M.

The Hodge Decomposition Theorem

Theorem
Let (M, g) be a compact, Riemannian manifold. Then for each $k=1, \ldots, n$, the Hilbert space $\Omega^{k}(M)$ of differential k-forms on M admits an orthonormal decomposition:

$$
\Omega^{k}(M)=\operatorname{im} d \oplus \operatorname{im} \delta \oplus \operatorname{ker} \Delta_{k} .
$$

Where d denotes the exterior derivative, δ denotes the codifferential, and $\Delta_{k}=d \delta+\delta d$ is the Hodge Laplacian on M.

Corollary
$H_{d R}^{k}(M)=\operatorname{ker}\left(\Delta_{k}\right)$

The Codifferential

The codifferential δ is a map:

$$
\delta: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)
$$

defined by:

$$
\delta \omega=(-1)^{n(n-k)+1} * d * \omega .
$$

- Fun Facts:

1. δ is linear over \mathbb{R}
2. $\delta \circ \delta=0$

Definition
The k-th Hodge Laplacian $\Delta_{k}: \Omega^{k}(M) \rightarrow \Omega^{k}(M)$ is the mapping

$$
\Delta_{k}=\delta d+d \delta
$$

The Hodge Star

Let e_{1}, \ldots, e_{n} be an orthonormal basis for $T_{p} M$. Then we see that

$$
V_{g}=e^{1} \wedge \ldots \wedge e^{n}
$$

which measures the n-dimensional volume such that

$$
V_{g}\left(e_{1}, \ldots, e_{n}\right)=1
$$

Suppose we take $e^{i_{1}} \wedge \ldots \wedge e^{i_{k}}$. We can determine V_{g} if we also know $e^{j_{1}} \wedge \ldots \wedge e^{j_{n-k}}$ where the j_{ℓ} 's are the indices that are complementary to i_{1}, \ldots, i_{k}.

The Hodge Star

The Hodge star $*: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M)$ maps a k-form ω to $* \omega \in \Omega^{n-k}(M)$ such that

$$
\omega \wedge * \omega=V_{g} .
$$

This mapping is an isomorphism! so $\Omega^{k}(M) \cong \Omega^{n-k}(M)$.

The Codifferential

The codifferential $\delta=(-1)^{n(n-k)+1} * d *$ can be explained by the following process:

1. Ignore $(-1)^{n(n-k)+1}$, it's there for algebraic reasons.
2. Imagine a k-form ω as a way to measure k-dimensional subspace of a hypercube.
3. Instead of using k, measure the complementary $n-k$-dimensional volume of the hypercube given by $* \omega$.
4. Take the exterior derivative of $* \omega$ which gives an $n-(k-1)$ dimensional volume.
5. Imagine the volume of the complementary $(k-1)$-dimensional volume which is given by $* d * \omega$.

The Inner Product on $\Omega^{k}(M)$

We can now define an inner product on $\Omega^{k}(M)$ by:

$$
(\omega, \eta)=\int_{M} \omega \wedge * \eta
$$

- With respect to this inner product, δ is the adjoint to d. For all $\omega \in \Omega^{k-1}(M)$ and,$\eta \in \Omega^{k}(M)$

$$
(d \omega, \eta)=(\omega, \delta \eta)
$$

The Hodge Decomposition Theorem

Theorem
Let (M, g) be a compact, Riemannian manifold. Then for each $k=1, \ldots, n$, the Hilbert space $\Omega^{k}(M)$ of differential k-forms on M admits an orthonormal decomposition:

$$
\Omega^{k}(M)=\operatorname{im} d \oplus \operatorname{im} \delta \oplus \operatorname{ker} \Delta_{k} .
$$

Where d denotes the exterior derivative, δ denotes the codifferential, and $\Delta_{k}=d \delta+\delta d$ is the Hodge Laplacian on M.

Corollary
$H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)$

Proof of the Corollary

Corollary
$H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)$
Proof:

- We will show that the mapping

$$
\phi: \operatorname{ker} \Delta_{k} \rightarrow H_{d R}^{k}(M)=\frac{\operatorname{ker} d_{k}}{\operatorname{im} d_{k-1}}
$$

defined by:

$$
\phi(\omega)=[\omega]
$$

is bijective.

- Decompose ω :

$$
\begin{aligned}
\phi(\omega) & =[\omega] \\
& =\left[\omega_{d}+\omega_{\delta}+\omega_{\Delta}\right] \\
& =\left[\omega_{d}\right]+\left[\omega_{\delta}\right]+\left[\omega_{\Delta}\right]
\end{aligned}
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in$ im d_{k-1}
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative.We know $d \omega=0$.

$$
0=d \omega=d \omega_{d}+d \omega_{\delta}+d \omega_{\Delta} .
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in$ im d_{k-1}
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
0=d \omega=d \circ d \eta_{1}+d \circ \delta \eta_{2}+d \omega_{\Delta} .
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
0=0+d \circ \delta \eta_{2}+d \omega_{\Delta} .
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
0=0+d \circ \delta \eta_{2}+d \omega_{\Delta} .
$$

$$
\left(\Delta_{k} \omega_{\Delta}, \omega_{\Delta}\right)=0
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
\begin{aligned}
& 0=0+d \circ \delta \eta_{2}+d \omega_{\Delta} \\
& \left((d \delta+\delta d) \omega_{\Delta}, \omega_{\Delta}\right)=0
\end{aligned}
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
\begin{gathered}
0=0+d \circ \delta \eta_{2}+d \omega_{\Delta} . \\
\left(d \delta \omega_{\Delta}, \omega_{\Delta}\right)+\left(\delta d \omega_{\Delta}, \omega_{\Delta}\right)=0
\end{gathered}
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
0=0+d \circ \delta \eta_{2}+d \omega_{\Delta} .
$$

$$
\left(\delta \omega_{\Delta}, \delta \omega_{\Delta}\right)+\left(d \omega_{\Delta}, d \omega_{\Delta}\right)=0
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
\begin{aligned}
& 0=0+d \circ \delta \eta_{2}+d \omega_{\Delta} \\
& \left\|\delta \omega_{\Delta}\right\|^{2}+\left\|d \omega_{\Delta}\right\|^{2}=0
\end{aligned}
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
\begin{aligned}
& 0=0+d \circ \delta \eta_{2}+0 . \\
& \left\|\delta \omega_{\Delta}\right\|^{2}+\left\|d \omega_{\Delta}\right\|^{2}=0
\end{aligned}
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
0=d \circ \delta \eta_{2}
$$

$$
\left(d \circ \delta \eta_{2}, \eta_{2}\right)=0
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
0=d \circ \delta \eta_{2}
$$

$$
\left(\delta \eta_{2}, \delta \eta_{2}\right)=0
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
\begin{aligned}
& 0=d \circ \delta \eta_{2} . \\
& \left(\omega_{\delta}, \omega_{\delta}\right)=0
\end{aligned}
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
\begin{gathered}
0=0+d \circ \delta \eta_{2}+0 . \\
\left\|\omega_{\delta}\right\|^{2}=0
\end{gathered}
$$

Proof of the Corollary

Claim: $\left[\omega_{d}\right]=[0]$
Proof: $\omega_{d} \in \operatorname{im} d_{k-1}$
Claim: $\omega_{\delta}=0$
Proof: Take the exterior derivative. We know $d \omega=0$.

$$
\begin{gathered}
0=0+d \circ \delta \eta_{2}+0 . \\
\omega_{\delta}=0
\end{gathered}
$$

Proof of the Corollary

Corollary
$H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)$
Proof:

- We will show that the mapping

$$
\phi: \operatorname{ker} \Delta_{k} \rightarrow H_{d R}^{k}(M)=\frac{\operatorname{ker} d_{k}}{\operatorname{im} d_{k-1}}
$$

defined by:

$$
\phi(\omega)=[\omega]
$$

is bijective.

- Decompose ω :

$$
\begin{aligned}
\phi(\omega) & =[\omega] \\
& =\left[\omega_{d}+\omega_{\delta}+\omega_{\Delta}\right] \\
& =\left[\omega_{d}\right]+\left[\omega_{\delta}\right]+\left[\omega_{\Delta}\right]
\end{aligned}
$$

Proof of the Corollary

Corollary
$H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)$
Proof:

- Injective: Let $\omega \in \operatorname{ker} \Delta_{k}$ be such that

$$
\phi(\omega)=[0] .
$$

We have:

$$
\phi(\omega)=[\omega]=\left[\omega_{d}\right]+\left[\omega_{\delta}\right]+\left[\omega_{\Delta}\right]
$$

Proof of the Corollary

Corollary
$H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)$
Proof:

- Injective: Let $\omega \in \operatorname{ker} \Delta_{k}$ be such that

$$
\phi(\omega)=[0] .
$$

We have:

$$
\phi(\omega)=[\omega]=\left[\omega_{d}\right]+[0]+\left[\omega_{\Delta}\right] .
$$

Proof of the Corollary

Corollary
$H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)$
Proof:

- Injective: Let $\omega \in \operatorname{ker} \Delta_{k}$ be such that

$$
\phi(\omega)=[0] .
$$

We have:

$$
\phi(\omega)=[\omega]=[0]+[0]+\left[\omega_{\Delta}\right] .
$$

Proof of the Corollary

Corollary
$H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)$
Proof:

- Injective: Let $\omega \in \operatorname{ker} \Delta_{k}$ be such that

$$
\phi(\omega)=[0] .
$$

We have:

$$
\phi(\omega)=[\omega]=\left[\omega_{\Delta}\right]=[0] .
$$

Therefore $\omega_{\Delta}=0$.

Proof of the Corollary

Corollary
$H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)$
Proof:

- Surjective: Let $[\omega] \in H_{d R}^{k}(M)$. Then

$$
\begin{aligned}
\phi\left(\omega_{\Delta}\right) & =[0]+[0]+\left[\omega_{\Delta}\right] . \\
\phi\left(\omega_{\Delta}\right) & =\left[\omega_{d}\right]+\left[\omega_{\delta}\right]+\left[\omega_{\Delta}\right] \\
& =[\omega]
\end{aligned}
$$

Therefore $\phi: \operatorname{ker} \Delta_{k} \rightarrow H_{d R}^{k}(M)$ is an isomorphism.

Proof of the Corollary

Corollary
$H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)$
Proof:

- Surjective: Let $[\omega] \in H_{d R}^{k}(M)$. Then

$$
\begin{aligned}
\phi\left(\omega_{\Delta}\right) & =[0]+[0]+\left[\omega_{\Delta}\right] . \\
\phi\left(\omega_{\Delta}\right) & =\left[\omega_{d}\right]+\left[\omega_{\delta}\right]+\left[\omega_{\Delta}\right] \\
& =[\omega]
\end{aligned}
$$

Proof of the Corollary

Corollary
$H_{d R}^{k}(M) \cong \operatorname{ker}\left(\Delta_{k}\right)$
Proof:

- Surjective: Let $[\omega] \in H_{d R}^{k}(M)$. Then

$$
\begin{aligned}
\phi\left(\omega_{\Delta}\right) & =[0]+[0]+\left[\omega_{\Delta}\right] . \\
\phi\left(\omega_{\Delta}\right) & =\left[\omega_{d}\right]+\left[\omega_{\delta}\right]+\left[\omega_{\Delta}\right] \\
& =[\omega]
\end{aligned}
$$

Therefore $\phi: \operatorname{ker} \Delta_{k} \rightarrow H_{d R}^{k}(M)$ is an isomorphism.

Conclusion

In this talk, we have:

Conclusion

In this talk, we have:

- Given an intuitive explanation of all of the terminology necessary to understand the Hodge Decomposition Theorem.

Conclusion

In this talk, we have:

- Given an intuitive explanation of all of the terminology necessary to understand the Hodge Decomposition Theorem.
- Explained the relationship between the Hodge Laplacian and De Rham Cohomology.

Conclusion

In this talk, we have:

- Given an intuitive explanation of all of the terminology necessary to understand the Hodge Decomposition Theorem.
- Explained the relationship between the Hodge Laplacian and De Rham Cohomology.
- Proved that the kernel of the Hodge Laplacian is isomorphic to the De Rham Cohomology Groups of M.

Thank You!

John M Lee.
Smooth manifolds.
In Introduction to Smooth Manifolds, pages 1-31. Springer, 2013.

R Steven Rosenberg.
The Laplacian on a Riemannian manifold: an introduction to analysis on manifolds, volume 31.
Cambridge University Press, 1997.
U Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet.
Consistency of spectral clustering.
The Annals of Statistics, pages 555-586, 2008.
目 Frank W Warner.
Foundations of differentiable manifolds and Lie groups, volume 94.
Springer Science \& Business Media, 2013.

