The Hodge Decomposition Theorem

Ryan Vaughn

March 29, 2019
The Hodge Decomposition Theorem

Theorem
Let \((M, g)\) be a compact, Riemannian manifold. Then for each \(k = 1, \ldots, n\), the Hilbert space \(\Omega^k(M)\) of differential \(k\)-forms on \(M\) admits an orthonormal decomposition:

\[
\Omega^k(M) = \text{im} \, d \oplus \text{im} \, \delta \oplus \ker \Delta_k.
\]

Where \(d\) denotes the exterior derivative, \(\delta\) denotes the codifferential, and \(\Delta_k = d\delta + \delta d\) is the Hodge Laplacian on \(M\).

Corollary
\(H^k_{dR}(M) \cong \ker(\Delta_k)\)
Motivation

- Topological information (De Rham Cohomology Groups) of M can be inferred by knowing the kernel of the k-Laplacian Δ_k.
- In the case $k = 0$ (and sometimes $k = 1$), the spectrum of Δ_k can be inferred from finite data sampled from M.
- One of the goals for my dissertation is to find a way to infer for $k > 0$.
Overview

- Introduction to differential forms.
- Define common operations \wedge, \ast, on differential forms.
- Define the exterior derivative d as well as the codifferential δ.
- Construct the Hodge Laplacian $\Delta = d\delta + \delta d$.
- Define the De Rham Cohomology groups $H^k(M)$.

We will see how the Hodge Decomposition Theorem tells us that

$$H^k_{dR}(M) \cong \ker(\Delta_k).$$
Let M be a smooth manifold of dimension n.

- Hausdorff, second countable topological space that is locally homeomorphic to \mathbb{R}^n.
- Equipped with a *smooth structure*, so one can define smooth functions on M.

Examples: \mathbb{R}^n, spheres, torus
For each point $p \in M$, one can define the *tangent space at p* denoted T_pM, which is a dimension n vector space.

Given a smooth map $f : M \to N$, we obtain linear maps $df_p : T_pM \to T_{f(p)}N$ on each of the tangent spaces.
A Riemannian manifold \((M, g)\) is a smooth manifold together with a choice of inner product \(\langle \cdot, \cdot \rangle_g\) on each tangent space \(T_pM\).

This allows us to measure lengths and angles of vectors in each tangent space, as well as the lengths of curves \(\gamma : [a, b] \rightarrow M\).
Let M be a smooth manifold of dimension n:

- A differential n-form on M is like choosing a determinant on each tangent space T_pM.

\[
\det\left(\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}\right) = \text{Volume}
\]

- The determinant is \textit{multilinear}.
- The determinant is \textit{alternating}: If I plug in a set of linearly dependent vectors v_1, \ldots, v_n, then the determinant is zero.
Let M be a smooth manifold of dimension n:

- Formally, a differential n-form ω is a choice of alternating, multilinear map

$$\omega_p : T_p M \times \ldots \times T_p M \to \mathbb{R}$$

for each $p \in M$. Meaning that ω_p is zero whenever a linearly dependent set of vectors is inputted. We also require ω_p to vary smoothly across M a function of p.

- Intuitively, this is a way to measure “volume” in each tangent space.
Now let \((M, g)\) be an (orientable) Riemannian manifold of dimension \(n\).

- There is an obvious choice for an \(n\)-form.
- If we take an orthonormal set \(\{v_1, \ldots, v_n\}\) of vectors in \(T_pM\), the hypercube spanned by the vectors “should” have volume 1.
- There exists a unique \(n\)-form on \(M\) with this property, called the \textit{Riemannian volume form}, denoted \(V_g\).
- \(V_g\) is the differential form that assigns unit volume to unit hypercubes in each \(T_pM\).
Now \(M \) be a manifold of dimension \(n \) and let \(k < n \).

- Let \(\{e_1, ..., e_n\} \) be a basis for \(T_pM \).

- **Example:** Let \(v_1, v_2 \in T_pM \) and Denote \(e^1 \wedge e^2(v_1, v_2) \) as the 2-d volume of the square formed by projecting \(v_1 \) and \(v_2 \) onto the subspace formed by \(e_1 \) and \(e_2 \).

- \(e^1 \wedge e^2 \) is a 2-form. (Assuming we construct it across all \(T_pM \).)
For any choice of \(k \) unique basis vectors \(\{e_{i_1}, ..., e_{i_k}\} \), I can define \(e^{i_1} \wedge ... \wedge e^{i_k} \) in the same manner to measure the \(k \) dimensional area of vectors in the subspace spanned by \(e_{i_1}, ..., e_{i_k} \).

- For technical reasons, we always choose \(i_k \) to be strictly increasing.

- Each such \(e^{i_1} \wedge ... \wedge e^{i_k} \) can be added and scalar multiplied.
A differential k-form ω can be written as:

$$\omega = \sum_{I=(i_1,...,i_k)} f_I e^I$$

where $e^I = e^{i_1} \wedge \ldots \wedge e^{i_k}$ and $f_I : M \to \mathbb{R}$ is smooth. (The f_I represent a choice of linear constants for each fixed $T_p M$ that varies smoothly across M.)

The set of all differential k-forms on a manifold M is denoted $\Omega^k(M)$.

k-forms

Ryan Vaughn
The Hodge Decomposition Theorem
The set $\Omega^k(M)$ is $\binom{n}{k}$ dimensional over $C^\infty M$.

- There are $\binom{n}{k}$ ways to select e^I, and the set of e^I are a pointwise basis for $\Omega^k(M)$.
- Functions in $C^\infty(M)$ denote a way to choose linear constants over each T_pM.
- In the case $k = 0$, we define $\Omega^0(M) = C^\infty(M)$.

Ryan Vaughn

The Hodge Decomposition Theorem
The Exterior Derivative

- The Exterior derivative d_k maps k-forms to $k + 1$ forms.
- The Fundamental Theorem of Calculus exists on manifolds, and is stated in terms of d (Stokes’ Theorem).

$$\int_M d\omega = \int_{\partial M} \omega$$
The Exterior Derivative

- When $k = 0$, a differential form is simply a smooth function $f : M \to \mathbb{R}$. This induces a linear map on tangent spaces:

$$df_p : T_p M \to T_{f(p)} \mathbb{R} = \mathbb{R}$$

- df_p is 1-multilinear, alternating, and varies smoothly as a function of p. Thus, it is a 1-form!
The Exterior Derivative

- If \(\omega \) is a \(k \)-form and we write:

\[
\omega = \sum_{I=(i_1,\ldots,i_k)} f_I e^I
\]

then we define \(d\omega \) as:

\[
d\omega = \sum_{I=(i_1,\ldots,i_k)} df_i \wedge e^I.
\]

- We take the 0-form \(f_i \), make it into a 1-form, then “glue” it to \(e^I \) with the wedge product, making a \(k + 1 \) form.
The Exterior Derivative

- In practice, we need to know more algebra to compute $d\omega$.
- **Fun Facts:**
 1. If f is a constant function, $df = 0$.
 2. d is linear over \mathbb{R}.
 3. $d_{k+1}(d_k \omega) = 0$ for any $\omega \in \Omega^k(M)$.

\[d \circ d = 0. \]
De Rham Cohomology

- $d_{k+1}(d_k \omega) = 0$ implies that $\ker d_{k+1} \subseteq \im d_k$.
- Define
 $$H^k_{dR}(M) = \frac{\ker d_{k+1}}{\im d_k}.$$
- $H^k_{dR}(M)$ is a (possibly infinite-dimensional) vector space over \mathbb{R}, called the k-th de Rham Cohomology group of M.
- The dimension of $H^k_{dR}(M)$ roughly counts the number of k-dimensional holes in M.

Ryan Vaughn

The Hodge Decomposition Theorem
The Hodge Decomposition Theorem

Theorem

Let \((M, g)\) be a compact, Riemannian manifold. Then for each \(k = 1, \ldots, n\), the Hilbert space \(\Omega^k(M)\) of differential \(k\)-forms on \(M\) admits an orthonormal decomposition:

\[\Omega^k(M) = \text{im } d \oplus \text{im } \delta \oplus \ker \Delta_k.\]

Where \(d\) denotes the exterior derivative, \(\delta\) denotes the codifferential, and \(\Delta_k = d\delta + \delta d\) is the Hodge Laplacian on \(M\).

Corollary

\[H^k_{dR}(M) = \ker(\Delta_k)\]
The Codifferential

The codifferential δ is a map:

$$\delta : \Omega^k(M) \to \Omega^{k-1}(M)$$

defined by:

$$\delta \omega = (-1)^{n(n-k)+1} \ast d \ast \omega.$$

Fun Facts:

1. δ is linear over \mathbb{R}
2. $\delta \circ \delta = 0$

Definition

The k-th Hodge Laplacian $\Delta_k : \Omega^k(M) \to \Omega^k(M)$ is the mapping

$$\Delta_k = \delta d + d\delta.$$
The Hodge Star

Let $e_1, ..., e_n$ be an orthonormal basis for $T_p M$. Then we see that

$$V_g = e^1 \wedge ... \wedge e^n$$

which measures the n-dimensional volume such that

$$V_g(e_1, ..., e_n) = 1.$$

Suppose we take $e^{i_1} \wedge ... \wedge e^{i_k}$. We can determine V_g if we also know $e^{j_1} \wedge ... \wedge e^{j_{n-k}}$ where the j_ℓ’s are the indices that are complementary to $i_1, ..., i_k$.

Ryan Vaughn
The Hodge star $\star : \Omega^k(M) \to \Omega^{n-k}(M)$ maps a k-form ω to $\star \omega \in \Omega^{n-k}(M)$ such that

$$\omega \wedge \star \omega = V_g.$$

This mapping is an isomorphism! so $\Omega^k(M) \cong \Omega^{n-k}(M)$.

The Hodge Decomposition Theorem
The codifferential $\delta = (-1)^{n(n-k)+1} * d *$ can be explained by the following process:

1. Ignore $(-1)^{n(n-k)+1}$, it’s there for algebraic reasons.
2. Imagine a k-form ω as a way to measure k-dimensional subspace of a hypercube.
3. Instead of using k, measure the complementary $n - k$-dimensional volume of the hypercube given by $*\omega$.
4. Take the exterior derivative of $*\omega$ which gives an $n - (k - 1)$ dimensional volume.
5. Imagine the volume of the complementary $(k - 1)$-dimensional volume which is given by $*d * \omega$.

Ryan Vaughn The Hodge Decomposition Theorem
We can now define an inner product on $\Omega^k(M)$ by:

$$\langle \omega, \eta \rangle = \int_M \omega \wedge \ast \eta$$

With respect to this inner product, δ is the adjoint to d. For all $\omega \in \Omega^{k-1}(M)$ and $\eta \in \Omega^k(M)$,

$$\langle d\omega, \eta \rangle = \langle \omega, \delta \eta \rangle$$
Theorem
Let \((M, g)\) be a compact, Riemannian manifold. Then for each \(k = 1, \ldots, n\), the Hilbert space \(\Omega^k(M)\) of differential \(k\)-forms on \(M\) admits an orthonormal decomposition:

\[
\Omega^k(M) = \text{im } d \oplus \text{im } \delta \oplus \ker \Delta_k.
\]

Where \(d\) denotes the exterior derivative, \(\delta\) denotes the codifferential, and \(\Delta_k = d\delta + \delta d\) is the Hodge Laplacian on \(M\).

Corollary
\(H^k_{dR}(M) \cong \ker(\Delta_k)\)
Proof of the Corollary

Corollary

\[H^k_{dR}(M) \cong \ker(\Delta_k) \]

Proof:

- We will show that the mapping

\[\phi : \ker \Delta_k \to H^k_{dR}(M) = \frac{\ker d_k}{\text{im} \ d_{k-1}} \]

defined by:

\[\phi(\omega) = [\omega] \]

is bijective.

- Decompose \(\omega \):

\[\phi(\omega) = [\omega] = [\omega_d + \omega_\delta + \omega_\Delta] \]

\[= [\omega_d] + [\omega_\delta] + [\omega_\Delta] \]
Claim: $[\omega_d] = [0]$

Proof: $\omega_d \in \text{im } d_{k-1}$

Claim: $\omega_\delta = 0$

Proof: Take the exterior derivative. We know $d\omega = 0$.

$$0 = d\omega = d\omega_d + d\omega_\delta + d\omega_\Delta.$$
Claim: $[\omega_d] = [0]$

Proof: $\omega_d \in \text{im } d_{k-1}$

Claim: $\omega_\delta = 0$

Proof: Take the exterior derivative. We know $d\omega = 0$.

\[
0 = d\omega = d \circ d\eta_1 + d \circ \delta\eta_2 + d\omega_\Delta.
\]
Proof of the Corollary

Claim: \([\omega_d] = [0]\)

Proof: \(\omega_d \in \text{im } d_{k-1}\)

Claim: \(\omega_\delta = 0\)

Proof: Take the exterior derivative. We know \(d\omega = 0\).

\[
0 = 0 + d \circ \delta \eta_2 + d\omega_\Delta.
\]
Proof of the Corollary

Claim: \([\omega_d] = [0]\)

Proof: \(\omega_d \in \text{im}\ d_{k-1}\)

Claim: \(\omega_\delta = 0\)

Proof: Take the exterior derivative. We know \(d\omega = 0\).

\[
0 = 0 + d \circ \delta \eta_2 + d\omega_\Delta.
\]

\[
(\Delta_k \omega_\Delta, \omega_\Delta) = 0
\]
Proof of the Corollary

Claim: \([\omega_d] = [0]\)

Proof: \(\omega_d \in \text{im } d_{k-1}\)

Claim: \(\omega_\delta = 0\)

Proof: Take the exterior derivative. We know \(d\omega = 0\).

\[
0 = 0 + d \circ \delta \eta_2 + d\omega_\Delta.
\]

\[
((d\delta + \delta d)\omega_\Delta, \omega_\Delta) = 0
\]
Proof of the Corollary

Claim: \([\omega_d] = [0]\)

Proof: \(\omega_d \in \text{im } d_{k-1}\)

Claim: \(\omega_\delta = 0\)

Proof: Take the exterior derivative. We know \(d\omega = 0\).

\[
0 = 0 + d \circ \delta \eta_2 + d\omega_\Delta.
\]

\[
(d\delta \omega_\Delta, \omega_\Delta) + (\delta d\omega_\Delta, \omega_\Delta) = 0
\]
Proof of the Corollary

Claim: \([\omega_d] = [0]\)

Proof: \(\omega_d \in \text{im } d_{k-1}\)

Claim: \(\omega_\delta = 0\)

Proof: Take the exterior derivative. We know \(d\omega = 0\).

\[
0 = 0 + d \circ \delta \eta_2 + d\omega_\Delta.
\]

\[
(\delta \omega_\Delta, \delta \omega_\Delta) + (d\omega_\Delta, d\omega_\Delta) = 0
\]
Proof of the Corollary

Claim: \([\omega_d] = [0]\)

Proof: \(\omega_d \in \text{im } d_{k-1}\)

Claim: \(\omega_\delta = 0\)

Proof: Take the exterior derivative. We know \(d\omega = 0\).

\[
0 = 0 + d \circ \delta \eta_2 + d\omega_\Delta.
\]

\[
\|\delta \omega_\Delta\|^2 + \|d\omega_\Delta\|^2 = 0
\]
Proof of the Corollary

Claim: \([\omega_d] = [0]\)

Proof: \(\omega_d \in \text{im } d_{k-1}\)

Claim: \(\omega_\delta = 0\)

Proof: Take the exterior derivative. We know \(d\omega = 0\).

\[
0 = 0 + d \circ \delta \eta_2 + 0.
\]

\[
\|\delta \omega_\Delta\|^2 + \|d \omega_\Delta\|^2 = 0
\]
Claim: \([\omega_d] = [0]\)

Proof: \(\omega_d \in \text{im } d_{k-1}\)

Claim: \(\omega_{\delta} = 0\)

Proof: Take the exterior derivative. We know \(d\omega = 0\).

\[0 = d \circ \delta \eta_2.\]

\[(d \circ \delta \eta_2, \eta_2) = 0\]
Claim: $[\omega_d] = [0]$

Proof: $\omega_d \in \text{im } d_{k-1}$

Claim: $\omega_\delta = 0$

Proof: Take the exterior derivative. We know $d\omega = 0$.

$$0 = d \circ \delta \eta_2.$$

$$(\delta \eta_2, \delta \eta_2) = 0$$
Proof of the Corollary

Claim: $[\omega_d] = [0]$

Proof: $\omega_d \in \text{im } d_{k-1}$

Claim: $\omega_\delta = 0$

Proof: Take the exterior derivative. We know $d\omega = 0$.

$$0 = d \circ \delta \eta_2.$$

$$(\omega_\delta, \omega_\delta) = 0$$
Proof of the Corollary

Claim: \([\omega_d] = [0]\)
Proof: \(\omega_d \in \text{im } d_{k-1}\)

Claim: \(\omega_\delta = 0\)
Proof: Take the exterior derivative. We know \(d\omega = 0\).

\[
0 = 0 + d \circ \delta \eta_2 + 0.
\]

\[
\|\omega_\delta\|^2 = 0
\]
Proof of the Corollary

Claim: \([\omega_d] = [0]\)

Proof: \(\omega_d \in \text{im } d_{k-1}\)

Claim: \(\omega_\delta = 0\)

Proof: Take the exterior derivative. We know \(d\omega = 0\).

\[
0 = 0 + d \circ \delta \eta_2 + 0.
\]

\(\omega_\delta = 0\)
Proof of the Corollary

H^k_{dR}(M) \cong \ker(\Delta_k)

Proof:

We will show that the mapping

\[\phi : \ker \Delta_k \to H^k_{dR}(M) = \frac{\ker \Delta_k}{\operatorname{im} d_{k-1}} \]

is bijective.

Decompose \(\omega \):

\[\phi(\omega) = [\omega] + [\omega d] + [\omega \delta] + [\omega \Delta] \]

is bijective.

Defined by:

\[\phi(\omega) = [\omega] \]
Proof of the Corollary

Corollary

\[H^k_{dR}(M) \cong \ker(\Delta_k) \]

Proof:

- **Injective:** Let \(\omega \in \ker \Delta_k \) be such that

\[\phi(\omega) = [0]. \]

We have:

\[\phi(\omega) = [\omega] = [\omega_d] + [\omega_\delta] + [\omega_\Delta] \]
Proof of the Corollary

Corollary

\(H^k_{dR}(M) \cong \ker(\Delta_k) \)

Proof:

- **Injective:** Let \(\omega \in \ker \Delta_k \) be such that

\[
\phi(\omega) = [0].
\]

We have:

\[
\phi(\omega) = [\omega] = [\omega_d] + [0] + [\omega_\Delta].
\]
Corollary

\[H^k_{dR}(M) \cong \ker(\Delta_k) \]

Proof:

- **Injective:** Let \(\omega \in \ker \Delta_k \) be such that

\[
\phi(\omega) = [0].
\]

We have:

\[
\phi(\omega) = [\omega] = [0] + [0] + [\omega_\Delta].
\]
Corollary

\[H^k_{dR}(M) \cong \ker(\Delta_k) \]

Proof:

- **Injective:** Let \(\omega \in \ker \Delta_k \) be such that \(\phi(\omega) = [0] \).

 We have:

 \[\phi(\omega) = [\omega] = [\omega\Delta] = [0]. \]

 Therefore \(\omega\Delta = 0 \).
Corollary

\[H^k_{dR}(M) \cong \ker(\Delta_k) \]

Proof:

- **Surjective:** Let \([\omega] \in H^k_{dR}(M)\). Then

 \[
 \phi(\omega_\Delta) = [0] + [0] + [\omega_\Delta].
 \]

 \[
 \phi(\omega_\Delta) = [\omega_d] + [\omega_\delta] + [\omega_\Delta]
 = [\omega]
 \]

Therefore \(\phi : \ker \Delta_k \to H^k_{dR}(M)\) is an isomorphism.
Proof of the Corollary

Corollary

\[H^k_{dR}(M) \cong \text{ker}(\Delta_k) \]

Proof:

- **Surjective**: Let \([\omega] \in H^k_{dR}(M)\). Then

\[
\phi(\omega_\Delta) = [0] + [0] + [\omega_\Delta].
\]

\[
\phi(\omega_\Delta) = [\omega_d] + [\omega_\delta] + [\omega_\Delta]
= [\omega]
\]
Proof of the Corollary

Corollary

$H^k_{dR}(M) \cong \ker(\Delta_k)$

Proof:

- **Surjective:** Let $[\omega] \in H^k_{dR}(M)$. Then

 $\phi(\omega_\Delta) = [0] + [0] + [\omega_\Delta].$

\[
\phi(\omega_\Delta) = [\omega_d] + [\omega_\delta] + [\omega_\Delta] \\
= [\omega]
\]

Therefore $\phi : \ker \Delta_k \rightarrow H^k_{dR}(M)$ is an isomorphism.
In this talk, we have:

- Given an intuitive explanation of all of the terminology necessary to understand the Hodge Decomposition Theorem.
- Explained the relationship between the Hodge Laplacian and De Rham Cohomology.
- Proved that the kernel of the Hodge Laplacian is isomorphic to the De Rham Cohomology Groups of \mathcal{M}.

Ryan Vaughn
The Hodge Decomposition Theorem
In this talk, we have:

- Given an intuitive explanation of all of the terminology necessary to understand the Hodge Decomposition Theorem.
In this talk, we have:

- Given an intuitive explanation of all of the terminology necessary to understand the Hodge Decomposition Theorem.
- Explained the relationship between the Hodge Laplacian and De Rham Cohomology.
Conclusion

In this talk, we have:

▶ Given an intuitive explanation of all of the terminology necessary to understand the Hodge Decomposition Theorem.
▶ Explained the relationship between the Hodge Laplacian and De Rham Cohomology.
▶ Proved that the kernel of the Hodge Laplacian is isomorphic to the De Rham Cohomology Groups of M.
Thank You!

