The Hodge Decomposition Theorem

Ryan Vaughn

March 29, 2019

Ryan Vaughn The Hodge Decomposition Theorem

A (1) > A (2) > A

< ≣⇒

Theorem

Let (M, g) be a compact, Riemannian manifold. Then for each k = 1, ..., n, the Hilbert space $\Omega^k(M)$ of differential k-forms on M admits an orthonormal decomposition:

 $\Omega^k(M) = \operatorname{im} d \oplus \operatorname{im} \delta \oplus \ker \Delta_k.$

Where d denotes the exterior derivative, δ denotes the codifferential, and $\Delta_k = d\delta + \delta d$ is the Hodge Laplacian on M.

Corollary $H^k_{dR}(M) \cong \ker(\Delta_k)$

- Topological information (De Rham Cohomology Groups) of M can be inferred by knowing the kernel of the k-Laplacian Δ_k.
- In the case k = 0 (and sometimes k = 1), the spectrum of ∆_k can be inferred from finite data sampled from M.
- One of the goals for my dissertation is to find a way to infer for k > 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Introduction to differential forms.
- ► Define common operations ∧, *, on differential forms
- Define the exterior derivative d as well as the codifferential δ .
- Construct the Hodge Laplacian $\Delta = d\delta + \delta d$
- Define the De Rham Cohomology groups $H^k(M)$.

We will see how the Hodge Decomposition Theorem tells us that

 $H^k_{dR}(M) \cong \ker(\Delta_k).$

□→ ★ 国 → ★ 国 → □ 国

Let M be a smooth manifold of dimension n.

- ► Hausdorff, second countable topological space that is locally homeomorphic to ℝⁿ.
- ► Equipped with a *smooth structure*, so one can define smooth functions on *M*.

Examples: \mathbb{R}^n , spheres, torus

For each point $p \in M$, one can define the *tangent space at p* denoted T_pM , which is a dimension *n* vector space.

Given a smooth map $f : M \to N$, we obtain linear maps $df_p : T_p M \to T_{f(p)} N$ on each of the tangent spaces.

- A Riemannian manifold (M,g) is a smooth manifold together with a choice of inner product ⟨·, ·⟩_g on each tangent space T_pM.
- ► This allows us to measure lengths and angles of vectors in each tangent space, as well as the lengths of curves γ : [a, b] → M.

• E •

Let M be a smooth manifold of dimension n:

► A differential *n*-form on *M* is like choosing a determinant on each tangent space $T_p M$.

$$det([v_1 | v_2 | v_3]) = Volume \left(\begin{array}{c} v_3 \\ v_2 \\ v_3 \end{array} \right)$$

- The determinant is *multilinear*.
- ► The determinant is *alternating*: If I plug in a set of linearly dependent vectors v₁,..., v_n, then the determinant is zero.

Let M be a smooth manifold of dimension n:

 Formally, a differential *n*-form ω is a choice of alternating, multilinear map

$$\omega_p: T_p M \times \ldots \times T_p M \to \mathbb{R}$$

for each $p \in M$. Meaning that ω_p is zero whenever a linearly dependent set of vectors is inputted. We also require ω_p to vary smoothly across M a function of p.

Intuitively, this is a way to measure "volume" in each tangent space.

伺下 イヨト イヨト

Now let (M, g) be an (orientable) Riemannian manifold of dimension n.

- There is an obvious choice for an *n*-form.
- ► If we take an orthonormal set {v₁,.., v_n} of vectors in T_pM, the hypercube spanned by the vectors "should" have volume 1.
- ► There exists a unique *n*-form on *M* with this property, called the *Riemannian volume form*, denoted V_g.
- ► V_g is the differential form that assigns unit volume to unit hypercubes in each T_pM.

・回 ・ ・ ヨ ・ ・ ヨ ・

Now *M* be a manifold of dimension *n* and let k < n.

- Let $\{e_1, ..., e_n\}$ be a basis for $T_p M$.
- Example: Let v₁, v₂ ∈ T_pM and Denote e¹ ∧ e²(v₁, v₂) as the 2-d volume of the square formed by projecting v₁ and v₂ onto the subspace formed by e₁ and e₂.
- ▶ $e^1 \wedge e^2$ is a 2-form. (Assuming we construct it across all $T_p M$.)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- For any choice of k unique basis vectors {e_{i1},..., e_{ik}}, I can define eⁱ¹ ∧ ... ∧ e^{ik} in the same manner to measure the k dimensional area of vectors in the subspace spanned by e_{i1},..., e_{ik}.
- ► For technical reasons, we always choose *i_k* to be strictly increasing.
- Each such $e^{i_1} \wedge ... \wedge e^{i_k}$ can be added and scalar multiplied.

• A differential k-form ω can be written as:

$$\omega = \sum_{I=(i_1,\ldots,i_k)} f_I e^I$$

where $e^{I} = e^{i_{1}} \wedge ... \wedge e^{i_{k}}$ and $f_{I} : M \to \mathbb{R}$ is smooth. (The f_{I} represent a choice of linear constants for each fixed $T_{p}M$ that varies smoothly across M.)

• The set of all differential k-forms on a manifold M is denoted $\Omega^k(M)$.

回 と く ヨ と く ヨ と

The set $\Omega^k(M)$ is $\binom{n}{k}$ dimensional over $C^{\infty}M$.

- There are ⁿ_k ways to select e^l, and the set of e^l are a pointwise basis for Ω^k(M).
- ► Functions in C[∞](M) denote a way to choose linear constants over each T_pM.
- In the case k = 0, we define $\Omega^0(M) = C^{\infty}(M)$.

・ 回 と ・ ヨ と ・ モ と …

- The Exterior derivative d_k maps k-forms to k + 1 forms.
- The Fundamental Theorem of Calculus exists on manifolds, and is stated in terms of d (Stokes' Theorem).

$$\int_{M}d\omega=\int_{\partial M}\omega$$

伺下 イヨト イヨト

When k = 0, a differential form is simply a smooth function f : M → ℝ. This induces a linear map on tangent spaces:

$$df_{\rho}: T_{\rho}M \to T_{f(\rho)}\mathbb{R} = \mathbb{R}$$

df_p is 1-multilinear, alternating, and varies smoothly as a function of *p*. Thus, it is a 1-form!

・日本 ・ヨト ・ヨト

• If ω is a *k*-form and we write:

$$\omega = \sum_{I=(i_1,\ldots,i_k)} f_I e^I$$

then we define $d\omega$ as:

$$d\omega = \sum_{I=(i_1,...,i_k)} df_I \wedge e^I.$$

We take the 0-form f_I, make it into a 1-form, then "glue" it to e^I with the wedge product, making a k + 1 form.

伺下 イヨト イヨト

• In practice, we need to know more algebra to compute $d\omega$.

Fun Facts:

- 1. If f is a constant function, df = 0.
- 2. *d* is linear over \mathbb{R} .
- 3. $d_{k+1}(d_k\omega) = 0$ for any $\omega \in \Omega^k(M)$.

 $d \circ d = 0.$

< ∃ >

- $d_{k+1}(d_k\omega) = 0$ implies that ker $d_{k+1} \subseteq \text{im } d_k$.
- Define

$$H_{dR}^k(M) = \frac{\ker d_{k+1}}{\operatorname{im} d_k}.$$

- ► H^k_{dR}(M) is a (possibly infinite-dimensional) vector space over ℝ, called the k-th de Rham Cohomology group of M.
- The dimension of H^k_{dR}(M) roughly counts the number of k-dimensional holes in M.

(本部)) (本語)) (本語)) (語)

Theorem

Let (M, g) be a compact, Riemannian manifold. Then for each k = 1, ..., n, the Hilbert space $\Omega^k(M)$ of differential k-forms on M admits an orthonormal decomposition:

 $\Omega^k(M) = \operatorname{im} d \oplus \operatorname{im} \delta \oplus \ker \Delta_k.$

Where d denotes the exterior derivative, δ denotes the codifferential, and $\Delta_k = d\delta + \delta d$ is the Hodge Laplacian on M.

 $\frac{\text{Corollary}}{H_{dR}^k(M) = \ker(\Delta_k)}$

The Codifferential

The codifferential δ is a map:

$$\delta: \Omega^k(M) \to \Omega^{k-1}(M)$$

defined by:

$$\delta\omega = (-1)^{n(n-k)+1} * d * \omega.$$

Fun Facts:

- 1. δ is linear over \mathbb{R} 2. $\delta \circ \delta = 0$
- $2. \ 0 \circ 0 =$

Definition

The k-th Hodge Laplacian $\Delta_k : \Omega^k(M) \to \Omega^k(M)$ is the mapping

$$\Delta_k = \delta d + d\delta.$$

- - E - E

Let $e_1, ..., e_n$ be an orthonormal basis for $T_p M$. Then we see that

$$V_g = e^1 \wedge ... \wedge e^n$$

which measures the *n*-dimensional volume such that

$$V_g(e_1, ..., e_n) = 1.$$

Suppose we take $e^{i_1} \wedge ... \wedge e^{i_k}$. We can determine V_g if we also know $e^{j_1} \wedge ... \wedge e^{j_{n-k}}$ where the j_ℓ 's are the indices that are complementary to $i_1, ..., i_k$.

向下 イヨト イヨト

The Hodge star $*: \Omega^k(M) \to \Omega^{n-k}(M)$ maps a k-form ω to $*\omega \in \Omega^{n-k}(M)$ such that

$$\omega \wedge *\omega = V_{g}.$$

This mapping is an isomorphism! so $\Omega^k(M) \cong \Omega^{n-k}(M)$.

伺下 イヨト イヨト

The codifferential $\delta = (-1)^{n(n-k)+1} * d*$ can be explained by the following process:

- 1. Ignore $(-1)^{n(n-k)+1}$, it's there for algebraic reasons.
- 2. Imagine a k-form ω as a way to measure k-dimensional subspace of a hypercube.
- 3. Instead of using k, measure the complementary n k-dimensional volume of the hypercube given by $*\omega$.
- 4. Take the exterior derivative of $*\omega$ which gives an n (k 1) dimensional volume.
- 5. Imagine the volume of the complementary (k 1)-dimensional volume which is given by $*d * \omega$.

(ロ) (同) (E) (E) (E)

We can now define an inner product on $\Omega^k(M)$ by:

$$(\omega,\eta)=\int_M\omega\wedge*\eta$$

▶ With respect to this inner product, δ is the adjoint to d. For all $\omega \in \Omega^{k-1}(M)$ and $\eta \in \Omega^k(M)$

$$(d\omega,\eta) = (\omega,\delta\eta)$$

Theorem

Let (M, g) be a compact, Riemannian manifold. Then for each k = 1, ..., n, the Hilbert space $\Omega^k(M)$ of differential k-forms on M admits an orthonormal decomposition:

 $\Omega^k(M) = \operatorname{im} d \oplus \operatorname{im} \delta \oplus \ker \Delta_k.$

Where d denotes the exterior derivative, δ denotes the codifferential, and $\Delta_k = d\delta + \delta d$ is the Hodge Laplacian on M.

Corollary $H^k_{dR}(M) \cong \ker(\Delta_k)$

Proof of the Corollary

Corollary $H_{dR}^k(M) \cong \ker(\Delta_k)$ **Proof:**

We will show that the mapping

$$\phi: \ker \Delta_k o H^k_{dR}(M) = rac{\ker d_k}{\operatorname{im} d_{k-1}}$$

defined by:

$$\phi(\omega) = [\omega]$$

is bijective.

Decompose ω:

$$\phi(\omega) = [\omega]$$

= $[\omega_d + \omega_\delta + \omega_\Delta]$
= $[\omega_d] + [\omega_\delta] + [\omega_\Delta]$

-≣->

Claim: $[\omega_d] = [0]$ Proof: $\omega_d \in \text{im } d_{k-1}$ Claim: $\omega_\delta = 0$

Proof: Take the exterior derivative. We know $d\omega = 0$.

$$0 = d\omega = d\omega_d + d\omega_\delta + d\omega_\Delta.$$

個 と く ヨ と く ヨ と …

$$0 = d\omega = d \circ d\eta_1 + d \circ \delta\eta_2 + d\omega_{\Delta}.$$

個 と く ヨ と く ヨ と …

$$0=0+d\circ\delta\eta_2+d\omega_{\Delta}.$$

個 と く ヨ と く ヨ と …

$$0 = 0 + d \circ \delta \eta_2 + d \omega_\Delta$$

$$(\Delta_k\omega_\Delta,\omega_\Delta)=0$$

(4回) (4回) (4回)

3

$$0 = 0 + d \circ \delta \eta_2 + d \omega_{\Delta}.$$

$$((d\delta + \delta d)\omega_{\Delta}, \omega_{\Delta}) = 0$$

回 と く ヨ と く ヨ と …

$$0 = 0 + d \circ \delta \eta_2 + d \omega_{\Delta}.$$

$$(d\delta\omega_{\Delta},\omega_{\Delta})+(\delta d\omega_{\Delta},\omega_{\Delta})=0$$

回 と く ヨ と く ヨ と …

$$0 = 0 + d \circ \delta \eta_2 + d \omega_\Delta.$$

$$(\delta\omega_{\Delta},\delta\omega_{\Delta})+(d\omega_{\Delta},d\omega_{\Delta})=0$$

回 と く ヨ と く ヨ と …

$$0 = 0 + d \circ \delta \eta_2 + d \omega_{\Delta}.$$

$$\|\delta\omega_{\Delta}\|^2 + \|d\omega_{\Delta}\|^2 = 0$$

回 と く ヨ と く ヨ と …

$$0 = 0 + d \circ \delta \eta_2 + 0.$$

$$\|\delta\omega_{\Delta}\|^2 + \|d\omega_{\Delta}\|^2 = 0$$

・回 ・ ・ ヨ ・ ・ ヨ ・

3

 $0 = d \circ \delta \eta_2.$

$$(\boldsymbol{d}\circ\delta\eta_2,\eta_2)=\boldsymbol{0}$$

・ 回 と ・ ヨ と ・ ヨ と

 $0 = d \circ \delta \eta_2.$

$$(\delta\eta_2,\delta\eta_2)=0$$

・ 回 と ・ ヨ と ・ ヨ と

 $0 = d \circ \delta \eta_2.$

$$(\omega_{\delta},\omega_{\delta})=0$$

・ 回 と ・ ヨ と ・ ヨ と

$$0=0+d\circ\delta\eta_2+0.$$

$$\|\omega_{\delta}\|^2 = 0$$

・回 ・ ・ ヨ ・ ・ ヨ ・

$$0=0+d\circ\delta\eta_2+0.$$

$$\omega_{\delta} = 0$$

▲圖▶ ▲屋▶ ▲屋▶

Proof of the Corollary

Corollary $H_{dR}^k(M) \cong \ker(\Delta_k)$ **Proof:**

We will show that the mapping

$$\phi: \ker \Delta_k o H^k_{dR}(M) = rac{\ker d_k}{\operatorname{im} d_{k-1}}$$

defined by:

$$\phi(\omega) = [\omega]$$

is bijective.

Decompose ω:

$$\phi(\omega) = [\omega]$$

= $[\omega_d + \omega_\delta + \omega_\Delta]$
= $[\omega_d] + [\omega_\delta] + [\omega_\Delta]$

-≣->

Corollary
$$H_{dR}^k(M) \cong \ker(\Delta_k)$$

Proof:

• Injective: Let $\omega \in \ker \Delta_k$ be such that

$$\phi(\omega) = [0].$$

We have:

$$\phi(\omega) = [\omega] = [\omega_d] + [\omega_{\delta}] + [\omega_{\Delta}]$$

・ 回 と く ヨ と く ヨ と

Corollary
$$H_{dR}^k(M) \cong \ker(\Delta_k)$$

Proof:

• Injective: Let $\omega \in \ker \Delta_k$ be such that

$$\phi(\omega) = [0].$$

We have:

$$\phi(\omega) = [\omega] = [\omega_d] + [0] + [\omega_\Delta].$$

・ 回 と く ヨ と く ヨ と

Corollary
$$H_{dR}^k(M) \cong \ker(\Delta_k)$$

Proof:

• Injective: Let $\omega \in \ker \Delta_k$ be such that

$$\phi(\omega) = [0].$$

We have:

$$\phi(\omega) = [\omega] = [0] + [0] + [\omega_{\Delta}].$$

・ 回 と く ヨ と く ヨ と

Corollary $H_{dR}^k(M) \cong \ker(\Delta_k)$ **Proof:**

• Injective: Let $\omega \in \ker \Delta_k$ be such that

$$\phi(\omega) = [0].$$

We have:

$$\phi(\omega) = [\omega] = [\omega_{\Delta}] = [0].$$

Therefore $\omega_{\Delta} = 0$.

Proof of the Corollary

Corollary

$$H^k_{dR}(M) \cong \ker(\Delta_k)$$

Proof:

• Surjective: Let $[\omega] \in H^k_{dR}(M)$. Then

$$\phi(\omega_{\Delta}) = [0] + [0] + [\omega_{\Delta}].$$

$$\phi(\omega_{\Delta}) = [\omega_d] + [\omega_{\delta}] + [\omega_{\Delta}]$$
$$= [\omega]$$

Therefore $\phi : \ker \Delta_k \to H^k_{dR}(M)$ is an isomorphism.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Corollary

$$H^k_{dR}(M) \cong \ker(\Delta_k)$$

Proof:

• Surjective: Let $[\omega] \in H^k_{dR}(M)$. Then

$$\phi(\omega_{\Delta}) = [0] + [0] + [\omega_{\Delta}].$$

$$\phi(\omega_{\Delta}) = [\omega_d] + [\omega_{\delta}] + [\omega_{\Delta}]$$
$$= [\omega]$$

・ 回 と ・ ヨ と ・ モ と …

Corollary

$$H^k_{dR}(M) \cong \ker(\Delta_k)$$
Proof:

• Surjective: Let $[\omega] \in H^k_{dR}(M)$. Then

$$\phi(\omega_{\Delta}) = [0] + [0] + [\omega_{\Delta}].$$

$$\phi(\omega_{\Delta}) = [\omega_d] + [\omega_{\delta}] + [\omega_{\Delta}]$$
$$= [\omega]$$

Therefore $\phi : \ker \Delta_k \to H^k_{dR}(M)$ is an isomorphism.

・日・ ・ ヨ・ ・ ヨ・

▲□→ ▲圖→ ▲厘→ ▲厘→

 Given an intuitive explanation of all of the terminology necessary to understand the Hodge Decomposition Theorem.

< ≣ >

- Given an intuitive explanation of all of the terminology necessary to understand the Hodge Decomposition Theorem.
- Explained the relationship between the Hodge Laplacian and De Rham Cohomology.

I ► < I ► ►</p>

- Given an intuitive explanation of all of the terminology necessary to understand the Hodge Decomposition Theorem.
- Explained the relationship between the Hodge Laplacian and De Rham Cohomology.
- Proved that the kernel of the Hodge Laplacian is isomorphic to the De Rham Cohomology Groups of *M*.

向下 イヨト イヨト

Thank You!

Ryan Vaughn The Hodge Decomposition Theorem

・ロン ・四と ・ヨン ・ヨ

Smooth manifolds.

In Introduction to Smooth Manifolds, pages 1-31. Springer, 2013.

Steven Rosenberg.

The Laplacian on a Riemannian manifold: an introduction to analysis on manifolds, volume 31. Cambridge University Press, 1997.

Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral clustering. The Annals of Statistics, pages 555–586, 2008.

Frank W Warner.

Foundations of differentiable manifolds and Lie groups, volume 94.

Springer Science & Business Media, 2013.