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Summary
I am interested in applying techniques from Riemannian geometry to machine learning and data-
driven methods in applied mathematics. Most of my work to date has been in the area of manifold
learning, in which one assumes that finite data {xi}Ni=1 ⊆ Rd lies on some unknown Riemannian
manifold (M, g). It is often the case that data collected in Rd is highly correlated, and thus the “data
space” Rd is much higher dimension than the underlying manifold M . Thus, it can be important
to attempt to ”learn” such an underlying manifold, most prominently to help avoid the so-called
”curse of dimensionality”.
So far, I have used techniques from manifold learning to help develop a mesh-free numerical scheme
for solving diffusion-type PDEs on finite data sampled from manifolds with boundary. A preprint[37]
based on these results is in the process of being submitted for publication and several offshoots of
this research are planned for future research.
I also have long-term interests in the study of discrete differential forms adapted to data science.
While discrete differential forms are well-studied in the finite element community through Discrete
Exterior Calculus[26] and Finite Element Exterior Calculus[3][2], less work has been done when given
only a sample of finitely many points. A treatment of differential forms on data would provide a
connection between topology, geometry, and machine learning.
Through these projects, I hope to provide a more sound understanding of the relationship between
topology, geometry, and data.

Introduction and Background: Diffusion Maps
One of the most successful algorithms in manifold learning is diffusion maps[12], developed by
Coifman and Lafon. Diffusion maps is a data-driven, graph-Laplacian-based method which is related
to spectral clustering [29][32] and Laplacian Eigenmaps[5]. It is an unsupervised learning technique
used often for clustering, dimensionality reduction, and data-driven forecasting.
An appealing aspect of the diffusion maps graph Laplacian is that it provably converges to the
Laplace-Beltrami operator ∆ : C∞(M)→ C∞(M) even when the data is not sampled uniformly on
M . The Laplace-Beltrami operator is a differential operator on M that encodes much information
about the geometry of M . In local coordinates, ∆ is defined by:

∆f = −
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In the case that M is an open subset of Rd, then the Laplace-Beltrami operator simplifies to the
standard Laplace operator in Rd
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The field of spectral geometry is devoted to studying the relationship between geometric properties
of M and the eigenfunctions of ∆. In this way, diffusion maps provides a connection between
machine learning and spectral geometry. Not only that, but eigenfunctions of ∆ are a generalization
of a Fourier basis on M , providing a useful tool from harmonic analysis.
In the work of Hein et. al.[25][24], it was shown that the diffusion maps graph Laplacian Lε,N on
N data points and with parameter ε > 0 converges in probability to an averaging operator ∆ε

as N →∞. Assuming M has empty boundary, the original diffusion maps paper of Coifman and
Lafon[12] showed that this averaging operator ∆ε converges uniformly to the Laplace-Beltrami
operator as ε → 0. In this sense, we can see that when M is a manifold without boundary, the
diffusion maps Laplacian converges to the Laplace-Beltrami operator as N →∞ and ε→ 0.

plim
N→∞

Lε,N = ∆ε and lim
ε→0

∆ε = ∆.

The convergence of ∆ε to ∆ for manifolds with boundary has proved to be more problematic. It
was shown in [12] that certain terms that would normally cancel in the case of empty boundary
would instead blow up for points near the boundary. It was, however, observed that the output
of diffusion maps estimated the Laplace-Beltrami operator applied to functions with Neumann
boundary conditions, though this behavior was never fully theoretically justified.

Current Project: Diffusion Maps for Boundary Value Problems
There has been recent interest in using diffusion maps as a data-driven method for numerically
solving elliptic PDEs[18][23]. This approach is potentially appealing, since diffusion maps does not
require one to generate a triangulation or mesh of the underlying manifold. However, the required
restriction to functions with Neumann boundary conditions is a significant restriction when solving
PDEs.
In our forthcoming paper, Diffusion Maps for Embedded Manifolds with Boundary with Applications
to PDEs[37], we provide a more rigorous treatment of diffusion maps near the boundary. Using the
notion of weak solutions to PDEs, we show that the averaging operator ∆ε converges uniformly
to ∆ in well-known weak (variational) sense. By using an additional consistent estimator for
boundary detection[9], we are able to adapt diffusion maps for use in boundary value problems.
This work provides rigorous theoretical justification of convergence for elliptic PDEs related to the
Laplace-Beltrami operator with Dirichlet, Neumann, and Robin boundary conditions. In particular, it
also explains the previously observed tendency for Diffusion maps to output functions with Neumann
boundary conditions. Our work is also shown to be effective experimentally by numerically solving
PDEs with Neumann, Dirichlet, and Robin boundary conditions on several data sets.
My contribution to this work was to adapt the original diffusion maps proof using a different set of
coordinates called semigeodesic coordinates[28]. Semigeodesic coordinates in this case are a set of
coordinates well-suited for computations made near the boundary. To show their usefulness, we first
look at a crucial lemma from the proof in diffusion maps.
The crux of the argument in the proof of convergence of diffusion maps relies on the following
asymptotic expansion:∫

M
k

(
|x− y|2Rd

ε2

)
f(y)dV = m0f(x) + ε2m2

2 (ω(x)f(x)−∆f(x)) +O(ε3) (1)

where m0 and m2 are constants, and ω(x) is a term depending on the embedding of M . Using a
few normalization steps, one can then isolate the Laplace-Beltrami operator on the right-hand side.
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This procedure is then used to construct the averaging operator ∆ε and then to show that such an
averaging operator converges uniformly to ∆ as ε→ 0.
The proof of this expansion is carried out by first showing that one can localize the integral on the
left hand side of (1) to a small ball B in M centered at x. In such a geodesic ball, one can Taylor
expand the left-hand term in Riemannian normal coordinates. In Riemannian normal coordinates,
the ball B is radially symmetric, and odd-order terms of the Taylor polynomial vanish due to radial
symmetry. In this way, a very complicated looking expansion of the left hand side of (1) simplifies
to the expression on the right hand side.
When x is a point near the boundary, such a geodesic ball B might intersect the boundary. In this
case, the coordinate representation of B can be highly non-symmetric, so problematic terms no
longer cancel.
To partially resolve this issue, instead of localizing to a geodesic ball in M , we localize to a
semigeodesic coordinate chart, which share many of the useful properties of Riemannian normal
coordinates. In this setup, localizing to a semigeodesic coordinate chart is more akin to localizing
to a “geodesic hypercylinder” oriented perpendicular to the boundary as opposed to a geodesic
ball. Such a hypercylinder is useful because it is still highly-symmetric and yet its intersection with
the boundary is well-behaved. The tradeoff for this, however, is that the expansion becomes more
complicated, with additional terms related to the curvature of the boundary in M .
By showing that one can always localize to such a chart, and then carrying out an expansion of the
left-hand-side of (1), we are able to obtain an analogous, but more complicated expansion as the
one in (1). Although most of the order-ε terms in the expansion cancel by symmetry, one term
remains which still blows up as x approaches the boundary:

εm∂
1(x) (ηx · ∇(f)(x)−H(x)f(x))

This term includes the mean curvature of the boundary H(x), as well as the inward-facing gradient
of f . However, we then show that when viewing the Laplacian in a weak (variational) sense, this
error term becomes order ε2. We use this result to show that the averaging operator ∆ε converges
to ∆ uniformly in a weak sense near the boundary.
In a similar manner, semigeodesic coordinates are also used to address the problem of sampling
on the boundary. In general, since the boundary is of measure zero, one can never expect for
sampled points to be boundary points of M . We show that the integral over a small ε-tubular
region of the boundary is an asymptotic approximation of an integral over the boundary. This
crucially allows us to estimate boundary integrals on data, which are necessary to apply a variational
approach. We then use a consistent estimator developed by Berry and Sauer[9] which estimates
a distance from the boundary in order to estimate these boundary integrals in practice. Using a
variational approach, we are then able to augment the Diffusion maps graph Laplacian for use in
several numerical experiments.

Future Research: Fermi Coordinates
Semigeodesic coordinates played a crucial role in our analysis near the boundary. In general,
semigeodesic coordinates are particularly amenable for computations around a codimension-one hy-
persurface ofM . Semigeodesic coordinates can be generalized further to so-called Fermi coordinates,
which are particularly well-adapted to computation of submanifolds of higher codimension.
In [22], many of the appealing properties which we use with semigeodesic coordinates are proven for
Fermi coordinates. The motivation for these results is for defining boundary value problems for dirac
operators on SpinC-manifolds of bounded geometry. While the structure of a SpinC-manifold does
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not naturally occur in manifold learning, I am interested in seeing if one could adapt this idea to a
simpler case. In particular, the boundary value problems treated in [22] are on principal bundles.
The paper of Wu and Singer [36] places a general class of techniques related to Diffusion maps as
operators on principal bundles. It seems that perhaps that one could use Fermi coordinates to solve
PDEs on these related operators.

Future Research: Local Kernels and Fractional PDEs
The theory of local kernels is also a promising area for future research. The radial symmetry of
the kernel k

(
|x−y|2

Rd

ε2

)
in diffusion maps is the key to recovering the Laplace-Beltrami operator.

In [8] it was shown that by varying properties of a specific class of kernels called local kernels,
the diffusion maps algorithm would estimate the Laplace-Beltrami operator on M with respect
to varying Riemannian metrics on M . This fact was used recently by [18, 23] to solve a more
general class of elliptic PDEs on manifolds without meshes. However, the theory developed in [8] is
restricted to manifolds without boundary, which is very restrictive for PDE applications. Having
generalized the standard diffusion maps result in [37], a more detailed analysis should allow us to
apply semigeodesic coordinates near the boundary for general local kernels. This would allow the
estimation of the Laplace-Beltrami operator with respect to any Riemannian metric on manifolds
with boundary. It would also allow us to solve PDEs with various boundary conditions for the class
of elliptic operators in [18, 23].
Diffusion maps has also recently seen use for solving fractional PDEs on manifolds without boundary.
In a recent paper [1], the authors were able to adapt diffusion maps to the case of the fractional
Laplacian on a compact manifolds without boundary with some additional assumptions. It stands to
reason that our treatment of the boundary could also be applied in this case to the fractional case.

Future Research:Discrete Differential Forms for Data
The Hodge Laplacian

∆k = −(δd+ dδ)

is a generalization of the Laplace-Beltrami operator which acts on differential k-forms on M
and is formed from the exterior derivative d and its L2-adjoint δ. The Hodge Decomposition
Theorem relates the spectrum of the Hodge k-Laplacian to the De Rham cohomology of a manifold.
Specifically, it says that each De Rham cohomology class [ω] in a compact manifold M has a unique
representative form ω for which ∆kω = 0. Thus, one can compute unique cohomology classes by
computing the eigenforms of the k-Laplacian with eigenvalue zero.
In the case that k = 0, the Hodge k-Laplacian is simply the Laplace-Beltrami operator acting
on functions, and the Hodge theorem says that eigenfunctions of the Laplacian with eigenvalue
zero correspond to distinct connected components. This interpretation helps explain why spectral
clustering works by projecting data onto eigenvectors of a graph Laplacian corresponding to the set
of smallest eigenvalues.
Currently, the higher Hodge k-Laplacians are well-studied in the numerical analysis community in
what is called Discrete Exterior Calculus (DEC)[26] and Finite Element Exterior Calculus (FEEC)[3][2].
Both of these theories have seen success in numerical approximation of PDEs involving differential
forms. What separates these methods is that they are discretized in such a way that classical
theorems such as Stokes’ theorem hold exactly. For instance, in such a scheme, a differential form
on a Riemannian manifold is realized as a simplicial cochain on a simplicial complex. The exterior
derivative is realized as the adjoint of the boundary operator, and the Hodge star is realized as
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the Poincare duality map. Since the Hodge Laplacian can be constructed using only the exterior
derivative and the Hodge Star, one can formulate the Hodge Laplacian in both the DEC and FEEC
schemes.
One of the main obstructions to DEC and FEEC in the case of manifold learning is that they require
an explicit triangulation of M into a simplicial complex. Thus, a priori, one must already know the
homeomorphism class of M , which is an unrealistic assumption in the context of data.
In statistics, there also has been work using a graph Hodge Laplacian. In [27][39], the authors propose
the HodgeRank algorithm used for statistical ranking of data that is incomplete or imbalanced.
Although this idea is similar to one on manifolds, no convergence result analogous to Diffusion
Maps has been done.
There is some evidence that the approximation of higher Hodge Laplacians is possible in manifold
learning. Most notably, in the work of Singer and Wu[34][35][36], the authors develop a diffusion
maps graph connection Laplacian acting on 1-forms. They then prove that it converges to the
manifold connection Laplacian in the same sense as in diffusion maps. The manifold connection
Laplacian is highly related to the Hodge Laplacian, and the Weitzenbock formula shows that the two
operators are equal on a space with zero Ricci curvature. Thus, it seems that a Hodge Laplacian on
data is not too far from reach, especially in the case of differential 1-forms.
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