Kernel Methods for Dimensionality Reduction

Ryan Vaughn

September 7, 2018

Ryan Vaughn Kernel Methods for Dimensionality Reduction

向下 イヨト イヨト

Overview

◆□ → ◆□ → ◆目 → ◆目 → ◆□ →

What is dimensionality reduction?

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

- What is dimensionality reduction?
- What are kernels and Reproducing Kernel Hilbert Spaces?

回 と く ヨ と く ヨ と

- What is dimensionality reduction?
- What are kernels and Reproducing Kernel Hilbert Spaces?
- How do we use kernels in dimensionality reduction?

向下 イヨト イヨト

- What is dimensionality reduction?
- What are kernels and Reproducing Kernel Hilbert Spaces?
- How do we use kernels in dimensionality reduction?
- Linear Technique: Principal Component Analysis

- ∢ ⊒ ⊳

- What is dimensionality reduction?
- What are kernels and Reproducing Kernel Hilbert Spaces?
- How do we use kernels in dimensionality reduction?
- Linear Technique: Principal Component Analysis
- Nonlinear Technique: Kernel Principal Component Analysis

Dimensionality Reduction

Let {x_i}ⁿ_{i=1} be a finite subset of points in ℝ^D sampled from a sample space S ⊆ ℝ^D.

直 とう きょう うちょう

Dimensionality Reduction

- Let {x_i}ⁿ_{i=1} be a finite subset of points in ℝ^D sampled from a sample space S ⊆ ℝ^D.
- ▶ Often we input our data {x_i}ⁿ_{i=1} in an algorithm by representing it as a data matrix X where the points x_i are the rows of the matrix.

$$X = \left(egin{array}{ccc} - & x_1^\top & - \ & \vdots & \ - & x_i^\top & - \ & \vdots & \ - & x_n^\top & - \end{array}
ight)$$

回 と く ヨ と く ヨ と

The goal of a Dimensionality reduction learning problem is to obtain a function P : ℝ^D → ℝ^d with d << D such that P preserves the "interesting features" of the sample space S.</p>

ヨト イヨト イヨト

- The goal of a Dimensionality reduction learning problem is to obtain a function P : ℝ^D → ℝ^d with d << D such that P preserves the "interesting features" of the sample space S.</p>
- If P : ℝ^D → ℝ^d is a linear map, we call the learning problem a linear dimensionality reduction technique. Otherwise, it is nonlinear.

Let D = 2 and d = 1:

< ∃⇒

Let D = 2 and d = 1:

- ◆ @ ▶ - ◆ 臣

< ∃⇒

Э

Let D = 2 and d = 1:

< 4 → < 2

< ∃⇒

Э

Let D = 2 and d = 1:

< 4 → < 2

< ∃→

Э

- Algorithms based on linear algebra are often computable.
- Algorithms based on linear algebra often produce linear projections or linearly projected data.
- Kernel methods are a way to modify these linear techniques so that the output is a nonlinear mapping on the data.

Linear technique + choice of kernel = kernelized linear technique

- What is dimensionality reduction?
- What are kernels and Reproducing Kernel Hilbert Spaces?
- How do we use kernels in dimensionality reduction?
- Linear Technique: Principal Component Analysis
- Nonlinear Technique: Kernel Principal Component Analysis

Recall that S is the space from which we sample data. In most cases, S will be some subset of \mathbb{R}^D

・ 回 ト ・ ヨ ト ・ ヨ ト

Recall that S is the space from which we sample data. In most cases, S will be some subset of \mathbb{R}^D

Definition

A function $k: S \times S \rightarrow \mathbb{R}$ is a symmetric and positive definite kernel if:

- 1. for any $x, y \in S$, k(x, y) = k(y, x)
- 2. for any finite set of points x_i and real coefficients c_i ,

$$\sum_{i,j\leq n}^n c_i c_j k(x_i, x_j) \geq 0$$

回 と く ヨ と く ヨ と

1. Linear Kernel: $k(x, y) = x \cdot y$

回 と く ヨ と く ヨ と

- 1. Linear Kernel: $k(x, y) = x \cdot y$
- 2. Polynomial Kernel: $k(x, y) = (x \cdot y + c)^{j}$

向下 イヨト イヨト

3

- 1. Linear Kernel: $k(x, y) = x \cdot y$
- 2. Polynomial Kernel: $k(x, y) = (x \cdot y + c)^{j}$
- 3. Sigmoid Kernel: $k(x, y) = tanh(\gamma x \cdot y + c)$

向下 イヨト イヨト

3

- 1. Linear Kernel: $k(x, y) = x \cdot y$
- 2. Polynomial Kernel: $k(x, y) = (x \cdot y + c)^{j}$
- 3. Sigmoid Kernel: $k(x, y) = tanh(\gamma x \cdot y + c)$
- 4. Radial Basis Function: $k(x, y) = e^{-|x-y|^2/\epsilon^2}$

- 1. Linear Kernel: $k(x, y) = x \cdot y$
- 2. Polynomial Kernel: $k(x, y) = (x \cdot y + c)^{j}$
- 3. Sigmoid Kernel: $k(x, y) = tanh(\gamma x \cdot y + c)$
- 4. Radial Basis Function: $k(x, y) = e^{-|x-y|^2/\epsilon^2}$
- 5. There are even kernels which are used on things like genetic or text data!

Definition

A Hilbert space $\mathcal H$ is an infinite dimensional vector space together with an inner product $\langle\cdot,\cdot\rangle_{\mathcal H}$ such that the metric

$$d(x,y) = \sqrt{\langle x-y, x-y \rangle_{\mathcal{H}}}$$

is complete (Cauchy sequences converge.)

(4) (3) (4) (3) (4)

(E)

▶ For each $x \in S$, consider the function $k(x, \cdot) : S \to \mathbb{R}$

ヨト イヨト イヨト

- ▶ For each $x \in S$, consider the function $k(x, \cdot) : S \to \mathbb{R}$
- ► Let *H* be the span of all such functions under function addition and scalar multiplication.

ヨット イヨット イヨッ

- ▶ For each $x \in S$, consider the function $k(x, \cdot) : S \to \mathbb{R}$
- ► Let *H* be the span of all such functions under function addition and scalar multiplication.
- Define an inner product on $\mathcal H$ by:

$$\langle k(x,\cdot), k(y,\cdot) \rangle_{\mathcal{H}} = k(x,y).$$

We define the feature map $\phi: S \to \mathcal{H}$ by the mapping $x \mapsto k(x, \cdot)$.

Theorem (Moore-Aronszajn[1])

Let k be a symmetric and positive definite kernel on S. Then $\mathcal H$ is the unique Hilbert space such that

$$k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}.$$

The space \mathcal{H} is called the Reproducing Kernel Hilbert Space of k.

Theorem (Moore-Aronszajn[1])

Let k be a symmetric and positive definite kernel on S. Then $\mathcal H$ is the unique Hilbert space such that

$$k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}.$$

The space \mathcal{H} is called the Reproducing Kernel Hilbert Space of k. **Takeaway:** Given a kernel, there exists a Hilbert space \mathcal{H} such that taking the inner product in \mathcal{H} on points in S is the same as plugging them into the kernel function.

- What is dimensionality reduction?
- What are kernels and Reproducing Kernel Hilbert Spaces?
- How do we use kernels in dimensionality reduction?
- Linear Technique: Principal Component Analysis
- Nonlinear Technique: Kernel Principal Component Analysis

1. Choose a kernel $k(\cdot, \cdot)$.

向下 イヨト イヨト

- 1. Choose a kernel $k(\cdot, \cdot)$.
- 2. Take any algorithm which can be computed purely using dot products $x_i \cdot x_j$.

- 1. Choose a kernel $k(\cdot, \cdot)$.
- Take any algorithm which can be computed purely using dot products x_i · x_j.
- 3. Replace each instance of $x_i \cdot x_j$ with $k(x_i, x_j)$.

- 1. Choose a kernel $k(\cdot, \cdot)$.
- Take any algorithm which can be computed purely using dot products x_i · x_j.
- 3. Replace each instance of $x_i \cdot x_j$ with $k(x_i, x_j)$.

Since $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}}$, this procedure results in carrying out the original algorithm inside of \mathcal{H} .

- What is dimensionality reduction?
- What are kernels and Reproducing Kernel Hilbert Spaces?
- How do we use kernels in dimensionality reduction?
- Linear Technique: Principal Component Analysis
- Nonlinear Technique: Kernel Principal Component Analysis

Linear Method: Principal Component Analysis

What PCA does:

▶ **Input:** Data matrix *X*, choice of dimension *d*.

伺下 イヨト イヨト

Linear Method: Principal Component Analysis

What PCA does:

- ▶ **Input:** Data matrix *X*, choice of dimension *d*.
- Let v₁ be the unit vector corresponding to the direction of highest variance. This vector is called the first principal component.

向下 イヨト イヨト

э

What PCA does:

- ▶ **Input:** Data matrix *X*, choice of dimension *d*.
- Let v₁ be the unit vector corresponding to the direction of highest variance. This vector is called the first principal component.
- Recursively define v_i as the unit vector in the direction of highest variance which is mutually orthogonal to all previously computed principal components.

What PCA does:

- ▶ **Input:** Data matrix *X*, choice of dimension *d*.
- Let v₁ be the unit vector corresponding to the direction of highest variance. This vector is called the first principal component.
- Recursively define v_i as the unit vector in the direction of highest variance which is mutually orthogonal to all previously computed principal components.
- ► The result is an ordered orthonormal basis {v_i}^D_{i=1} for ℝ^D called the principal components of D.

What PCA does:

- ▶ **Input:** Data matrix *X*, choice of dimension *d*.
- Let v₁ be the unit vector corresponding to the direction of highest variance. This vector is called the first principal component.
- Recursively define v_i as the unit vector in the direction of highest variance which is mutually orthogonal to all previously computed principal components.
- ► The result is an ordered orthonormal basis {v_i}^D_{i=1} for ℝ^D called the principal components of D.
- Define P : ℝ^D → ℝ^d as the linear mapping formed by projecting the data onto the subspace spanned by the first d principal components.

・ 同 ト ・ ヨ ト ・ ヨ ト

PCA on Two Gaussian Datasets

A ■

A black and white image with can be viewed as a matrix of numbers with values between 0 and 1. Example: A 9 \times 3 image.

PCA in Image Processing

Consider each 3×3 subimage of our example as a vector in \mathbb{R}^9 .

向下 イヨト イヨト

PCA in Image Processing

Consider each 3×3 subimage of our example as a vector in \mathbb{R}^9 . There are 7 such subimages, but only three unique ones:

As we move left to right on the image, the subimages begin to repeat themselves.

Translational repetition in an image creates "loops" in the set of subimages.

PCA in Image Processing

Consider the set of 40×40 subimages of the following image:

The subimages are vectors in \mathbb{R}^{1600} .

This is a PCA projection of the space of subimages into \mathbb{R}^3 **PCA Coordinates**

PCA captures the "loops" in the subimage space.

What is dimensionality reduction?

What are kernels and Reproducing Kernel Hilbert Spaces?

How do we use kernels in dimensionality reduction?

Linear Technique: Principal Component Analysis

Nonlinear Technique: Kernel Principal Component Analysis

3

In order to learn how to kernelize PCA, we must know how to compute it! Recall the *Singular Value Decomposition*:

Theorem

Let X be an $n \times d$ matrix. Then there exists orthogonal matrices U and V of size $n \times n$ and $d \times d$ respectively, as well as a diagonal matrix S of size $n \times d$ such that

 $X = USV^{\top}.$

The columns and rows of U and V are called the right/left singular vectors of X respectively, and the diagonal entrees of S are called the singular values of X.

Take the SVD of the data matrix X:

$$X = USV^{\top}.$$

Let V_d be the matrix consisting of the first d columns of V. It can be shown that the columns of V are the principal components of X. Thus, projecting onto the first d principal components is the same as multiplication on the right by the matrix V_d .

$$PCA(X, d) = XV_d$$
$$= USV^{\top}V_d$$
$$= U_dS_d$$

In order to Kernelize PCA, we need to compute PCA using purely dot products. We do this by using the *Gram matrix*:

$$XX^{\top} = (x_i \cdot x_j)_{i,j}$$

Using SVD, we see that:

$$XX^{\top} = USV^{\top}V^{\top}S^{\top}U^{\top}$$
$$= USS^{\top}U^{\top}$$

Thus, the SVD of the Gram matrix is $XX^{\top} = U(SS^{\top})U^{\top}$.

回 と く ヨ と く ヨ と

3

Thus, to compute PCA from the Gram matrix, we simply compute the SVD:

$$XX^{\top} = U(SS^{\top})U^{\top}.$$

Then compute PCA by computing $U_d(\sqrt{SS^{\top}}_d)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall that to use the Kernel trick, we simply replace all instances of $x_i \cdot x_j$ with

$$k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}}.$$

So to carry out Kernel PCA, we use the matrix $K = (k(x_i, x_j)_{i,j})$ instead of XX^{\top} .

• Compute the SVD of *K*:

$$K = \tilde{U}\tilde{S}\tilde{U}^{\top}.$$

(V = U in this case since K is a symmetric matrix.)

• $kPCA(X, d) = U_d \sqrt{S_d}$. Since

向下 イヨト イヨト

3

In the following, we use the RBF kernel $k(x,y) = e^{-|x-y|^2/\epsilon^2}$

 3

In comparison, this is how PCA performs:

э.

A ■

э

Kernel PCA on data

・ロト ・回ト ・ヨト

< ∃>

Э

Things I hope you learned:

- 1. What is a kernel?
- 2. What is a Reproducing Kernel Hilbert Space?
- 3. How to use kernels in dimensionality reduction.
- 4. How to implement kernel PCA.

- ∢ ⊒ ⊳

(A special thanks to Dr. Tyrus Berry for the code used in the subimage analysis.)

白 ト く ヨ ト く ヨ ト

Nachman Aronszajn.

Theory of reproducing kernels.

Transactions of the American mathematical society, 68(3):337–404, 1950.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola.

Kernel methods in machine learning. *The annals of statistics*, pages 1171–1220, 2008.

 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller.
 Kernel principal component analysis.
 In International Conference on Artificial Neural Networks, pages 583–588. Springer, 1997.

通 とう ほうとう ほうど