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I Nonlinear Technique: Kernel Principal Component Analysis

Ryan Vaughn Kernel Methods for Dimensionality Reduction



Overview

I What is dimensionality reduction?

I What are kernels and Reproducing Kernel Hilbert Spaces?

I How do we use kernels in dimensionality reduction?

I Linear Technique: Principal Component Analysis

I Nonlinear Technique: Kernel Principal Component Analysis

Ryan Vaughn Kernel Methods for Dimensionality Reduction



Overview

I What is dimensionality reduction?

I What are kernels and Reproducing Kernel Hilbert Spaces?

I How do we use kernels in dimensionality reduction?

I Linear Technique: Principal Component Analysis

I Nonlinear Technique: Kernel Principal Component Analysis

Ryan Vaughn Kernel Methods for Dimensionality Reduction



Overview

I What is dimensionality reduction?

I What are kernels and Reproducing Kernel Hilbert Spaces?

I How do we use kernels in dimensionality reduction?

I Linear Technique: Principal Component Analysis

I Nonlinear Technique: Kernel Principal Component Analysis

Ryan Vaughn Kernel Methods for Dimensionality Reduction



Overview

I What is dimensionality reduction?

I What are kernels and Reproducing Kernel Hilbert Spaces?

I How do we use kernels in dimensionality reduction?

I Linear Technique: Principal Component Analysis

I Nonlinear Technique: Kernel Principal Component Analysis

Ryan Vaughn Kernel Methods for Dimensionality Reduction



Overview

I What is dimensionality reduction?

I What are kernels and Reproducing Kernel Hilbert Spaces?

I How do we use kernels in dimensionality reduction?

I Linear Technique: Principal Component Analysis

I Nonlinear Technique: Kernel Principal Component Analysis

Ryan Vaughn Kernel Methods for Dimensionality Reduction



Dimensionality Reduction

I Let {xi}ni=1 be a finite subset of points in RD sampled from a
sample space S ⊆ RD .

I Often we input our data {xi}ni=1 in an algorithm by
representing it as a data matrix X where the points xi are the
rows of the matrix.

X =


− x>1 −

...
− x>i −

...
− x>n −


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Dimensionality Reduction

I The goal of a Dimensionality reduction learning problem is to
obtain a function P : RD → Rd with d << D such that P
preserves the “interesting features” of the sample space S .

I If P : RD → Rd is a linear map, we call the learning problem a
linear dimensionality reduction technique. Otherwise, it is
nonlinear.
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Examples

Let D = 2 and d = 1:
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Broad Overview of Kernel Methods

I Algorithms based on linear algebra are often computable.

I Algorithms based on linear algebra often produce linear
projections or linearly projected data.

I Kernel methods are a way to modify these linear techniques so
that the output is a nonlinear mapping on the data.

Linear technique + choice of kernel = kernelized linear technique
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Kernels

Recall that S is the space from which we sample data. In most
cases, S will be some subset of RD

Definition
A function k : S × S → R is a symmetric and positive definite
kernel if:

1. for any x , y ∈ S , k(x , y) = k(y , x)

2. for any finite set of points xi and real coefficients ci ,

n∑
i ,j≤n

cicjk(xi , xj) ≥ 0
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Examples of Kernels

Examples of symmetric and positive definite kernels:

1. Linear Kernel: k(x , y) = x · y

2. Polynomial Kernel: k(x , y) = (x · y + c)j

3. Sigmoid Kernel: k(x , y) = tanh(γx · y + c)

4. Radial Basis Function: k(x , y) = e−|x−y |
2/ε2

5. There are even kernels which are used on things like genetic or
text data!
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Reproducing Kernel Hilbert Spaces

Definition
A Hilbert space H is an infinite dimensional vector space together
with an inner product 〈·, ·〉H such that the metric

d(x , y) =
√
〈x − y , x − y〉H

is complete (Cauchy sequences converge.)

Ryan Vaughn Kernel Methods for Dimensionality Reduction



Reproducing Kernel Hilbert Spaces

Given a symmetric and positive definite kernel k , one can construct
an inner-product space of functions in the following manner:

I For each x ∈ S , consider the function k(x , ·) : S → R
I Let H be the span of all such functions under function

addition and scalar multiplication.

I Define an inner product on H by:〈
k(x , ·), k(y , ·)

〉
H = k(x , y).

We define the feature map φ : S → H by the mapping x 7→ k(x , ·).
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Reproducing Kernel Hilbert Spaces and Feature Maps

Theorem (Moore-Aronszajn[1])

Let k be a symmetric and positive definite kernel on S. Then H is
the unique Hilbert space such that

k(x , y) =
〈
φ(x), φ(y)

〉
H.

The space H is called the Reproducing Kernel Hilbert Space of k.

Takeaway: Given a kernel, there exists a Hilbert space H such
that taking the inner product in H on points in S is the same as
plugging them into the kernel function.
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How to Apply Kernels to Dimensionality Reduction

The Kernel Trick[2][3]:

1. Choose a kernel k(·, ·).

2. Take any algorithm which can be computed purely using dot
products xi · xj .

3. Replace each instance of xi · xj with k(xi , xj).

Since k(xi , xj) = 〈φ(xi ), φ(xj)〉H, this procedure results in carrying
out the original algorithm inside of H.
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Linear Method: Principal Component Analysis

What PCA does:

I Input: Data matrix X , choice of dimension d .

I Let v1 be the unit vector corresponding to the direction of
highest variance. This vector is called the first principal
component.

I Recursively define vi as the unit vector in the direction of
highest variance which is mutually orthogonal to all previously
computed principal components.

I The result is an ordered orthonormal basis {vi}Di=1 for RD

called the principal components of D.

I Define P : RD → Rd as the linear mapping formed by
projecting the data onto the subspace spanned by the first d
principal components.
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PCA on Two Gaussian Datasets

Ryan Vaughn Kernel Methods for Dimensionality Reduction



PCA in Image Processing

A black and white image with can be viewed as a matrix of
numbers with values between 0 and 1.
Example: A 9× 3 image.

=

 0 1 0 0 1 0 0 1 0
1 0 1 1 0 1 1 0 1
0 1 0 0 1 0 0 1 0


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PCA in Image Processing

Consider each 3× 3 subimage of our example as a vector in R9.

There are 7 such subimages, but only three unique ones:

= (0, 1, 0, 1, 0, 1, 0, 1, 0)

= (1, 0, 0, 0, 1, 1, 1, 0, 0)

= (0, 0, 1, 1, 1, 0, 0, 0, 1)
As we move left to right on the image, the subimages begin to
repeat themselves.
Translational repetition in an image creates “loops” in the set of
subimages.
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PCA in Image Processing

Consider the set of 40× 40 subimages of the following image:

The subimages are vectors in R1600.
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PCA in Image Processing

This is a PCA projection of the space of subimages into R3

PCA captures the “loops” in the subimage space.
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I Nonlinear Technique: Kernel Principal Component
Analysis

Ryan Vaughn Kernel Methods for Dimensionality Reduction



Computing PCA

In order to learn how to kernelize PCA, we must know how to
compute it! Recall the Singular Value Decomposition:

Theorem
Let X be an n × d matrix. Then there exists orthogonal matrices
U and V of size n× n and d × d respectively, as well as a diagonal
matrix S of size n × d such that

X = USV>.

The columns and rows of U and V are called the right/left singular
vectors of X respectively, and the diagonal entrees of S are called
the singular values of X .
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Computing PCA

Take the SVD of the data matrix X :

X = USV>.

Let Vd be the matrix consisting of the first d columns of V .
It can be shown that the columns of V are the principal
components of X . Thus, projecting onto the first d principal
components is the same as multiplication on the right by the
matrix Vd .

PCA(X , d) = XVd

= USV>Vd

= UdSd
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Kernel PCA

In order to Kernelize PCA, we need to compute PCA using purely
dot products. We do this by using the Gram matrix :

XX> = (xi · xj)i ,j

Using SVD, we see that:

XX> = USV>V>S>U>

= USS>U>

Thus, the SVD of the Gram matrix is XX> = U(SS>)U>.

Ryan Vaughn Kernel Methods for Dimensionality Reduction



Kernel PCA

Thus, to compute PCA from the Gram matrix, we simply compute
the SVD:

XX> = U(SS>)U>.

Then compute PCA by computing Ud(
√
SS>d)
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Kernel PCA

Recall that to use the Kernel trick, we simply replace all instances
of xi · xj with

k(xi , xj) = 〈φ(xi ), φ(xj)〉H.

So to carry out Kernel PCA, we use the matrix K = (k(xi , xj)i ,j
instead of XX>.

I Compute the SVD of K :

K = ŨS̃Ũ>.

(V = U in this case since K is a symmetric matrix.)

I kPCA(X , d) = Ud

√
Sd . Since
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Kernel PCA on data

In the following, we use the RBF kernel k(x , y) = e−|x−y |
2/ε2
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Kernel PCA on data

In comparison, this is how PCA performs:
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Kernel PCA on data
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Conclusion

Things I hope you learned:

1. What is a kernel?

2. What is a Reproducing Kernel Hilbert Space?

3. How to use kernels in dimensionality reduction.

4. How to implement kernel PCA.
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Thank you!

(A special thanks to Dr. Tyrus Berry for the code used in the
subimage analysis.)
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