
EULER’S FORMULA FOR COMPLEX EXPONENTIALS

According to Euler, we should regard the complex exponentialeit as related to
the trigonometric functionscos(t) andsin(t) via the following inspired definition:

ei t = cos t + i sin t where as usual in complex numbers i2 = −1. (1)

The justification of this notation is based on the formal derivative of both sides,
namely

d

dt
(ei t) = i (ei t) = i cos t + i2 sin t

= i cos t− sin t since i2 = −1
d

dt
(cos t + i sin t) = − sin t + i cos t since i is a constant.

along with the initial value of 1 for both sides att = 0, assuminge0 = 1 holds for
complex values too.

The motivation for looking at this combination comes from the link between point
in the plane with coordinates(x, y) and complex numbers formed by the relation
z = x + iy, sincez becomes the combinationr cos θ + ir sin θ, which suggests
that the combination may be interesting to look at (unit circle hasr = 1).

This turns out to be a very important unification and simplification of many results
in both trigonometry and calculus, in which the formula leads us to correct manip-
ulations. As well, people use it in algebra and also in signal processing. This is
illustrated first for some trig identities and then some differentiation and integration
results which are otherwise hard to compute.

1. An Amusing Equation: From Euler’s formula with angleπ, it follows that the
equation:

ei π + 1 = 0 (2)

which involves five interesting math values in one short equation.

2. Trig Identities: The notation suggests that the following formula ought to hold:

ei s · ei t = ei (s+t) (3)

which converts to the addition laws for cos and sin in components:

cos (s + t) = cos s cos t− sin s sin t,

sin (s + t) = sin s cos t + cos s sin t.

This codifies the addition laws in trig in a way you can always recover.



We can also express the trig functions in terms of the complex exponentialsei t, e−i t

since we know that cos(t) is even in t and sin(t) is odd in t. This reads as follows:

ei t = cos t + i sin t, e−i t = cos t− i sin t (4)

so adding (and dividing by 2) or subtracting (and dividing by 2 i) gives:

cos t =
ei t + e−i t

2
, sin t =

ei t − e−i t

2 i
. (5)

Another manipulation suggested by the notation:

ei te−i t = ei t−i t = e0 = 1 (6)

which leads to

1 = (cos t + i sin t) (cos (−t) + i sin (−t)) = (cos t + i sin t) (cos t− i sin t)
= cos2 t− i2 sin2 t = cos2 t + sin2 t.

There are many other uses and examples of this beautiful and useful formula. As a
further example note that lots of identities can be derived. The following is known
as DeMoivre’s Theorem:

For any positive integer n, ei n t = (ei t)n = (cos t + i sin t)n. (7)

This allows us to find solutions to algebra equations likez3 = 1 by viewing1
via Euler as having angle0, 2π, 4π. Then the three solutions are found to be

1, e
2 π i
3 =

−1 +
√

3 i

2
, e

4 π i
3 =

−1−√3 i

2
(8)

Note that you could find the solutions by factoring, from

z3 − 1 = (z − 1)(z2 + z + 1), (9)

but factoring won’t be easy forz7 − 1, while Euler’s formula works beautifully.

Application: Signal Processing Using the solutions tozn = 1 which form n
equally spaced points around the circle, approximations for periodic functions (sig-
nals) are found using the finite Fourier transform. For powers of 2 (and other com-
posite numbers), a fast algorithm exists to compute these (fast FT).

3. Calculus: The functions of the formea t cos bt and ea t sin bt come up in
applications often. To find their derivatives, we can either use the product rule or
use Euler’s formula

(
d

dt
)(ea t cos bt + i ea t sin bt) = (

d

dt
)e(a+ib) t = (a + ib)e(a+ib) t

= (a + ib)(ea t cos bt + i ea t sin bt)
= (aea t cos bt− b ea t sin bt)

+ i (b ea t cos bt + a ea t sin bt).



This finds both derivatives simultaneously and is especially nice for higher deriva-
tives (try the second derivatives yourself both ways!).

Integration: Even better is the integral aspect: To integrateea t cos bt andea t sin bt
simultaneously,integrate the complex exponential instead!

∫
(ea t cos bt + i ea t sin bt) dt =

∫
e(a+ib) t dt =

1
a + ib

e(a+ib) t + C

=
a− i b

a2 + b2
(ea t cos bt + i ea t sin bt) + C

=
a

a2 + b2
ea t cos bt +

b

a2 + b2
ea t sin bt) + C1

+ i (− b

a2 + b2
ea t cos bt +

a

a2 + b2
ea t sin bt + C2).

Another integration result is that any product of positive powers of cosine and sine
can be integrated explicitly. From Euler’s formula this becomes an algebra problem
with an easy calculus part, as illustrated in the following example:

∫
cos2 t dt =

∫
(
ei t + e−i t

2
)2 dt =

∫
(
e2 i t + 2 + e−2 i t

4
) dt (10)

which can be done term-by-term.

There is clearly nothing special about the power 2 or cosine alone, so any positive
power of sine and cosine can be expanded and then integrated.

The complex logarithmUsing polar coordinates and Euler’s formula allows us to
define the complex exponential as

ex+ i y = ex ei y (11)

which can be reversed for any non-zero complex number written in polar form as
ρ ei φ by inspection:x = ln(ρ), y = φ to which we can also add any integer
multiplying 2π to y for another solution!

4. Differential equations: This formula really comes into its own when we need
to solve differential equations with constant coefficients. Then the goal is to find
the right numbersa, b so that the above functions which we just differentiated solve
a given equation. For example, electrical circuits lead to differential equations that
relate current, charge and voltage based on the circuit elements. Circuit elements
are described by certain parameters like inductance, resistance, and capacitance.
These become coefficients in the differential equation.

ExampleThe differential equationa y′′ + b y′ + c y = 0 can be solved by seeking
exponential solutions with an unknown exponential factor. Substitutingy = er t

into the equation gives a solution if the quadratic equationa r2 + b r+c = 0 holds.
For lots of values ofa, b, c, namely those whereb2 − 4 a c < 0, the solutions are
complex. Euler’s formula allows us to interpret that easy algebra correctly.



Some Problems Involving Euler’s Formula

1. Consider the equationz6−1 = 0. Solve it in the two ways described below and
then write a brief paragraph conveying your thoughts on each and your preference.

A. Euler’s formula

B. View z6 − 1 as a difference of squares, factor it that way, then factor each
factor again. This identifies two quadratics that you can use to find the four roots
besides 1 and -1. (Fun bonus: factor as difference of cubes originally and you get
a degree four polynomial with those four roots as a product of quadratics)

2. Use Euler’s formula to find the two complex square roots of i by writing i as a
complex exponential. Do it also for−i and check that

√−i =
√−1

√
i.

3. A crazy notion: findii by writing i as a complex exponential.

4. (Challenging) Factoringz2 + 1 = (z + i)(z − i) and using partial fractions,
integrate (formally) ∫ 1

z2 + 1
dz

and try to get back to the arctan you know and love by using the complex log.


