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1. (a) Use the Euclidean Algorithm to find GCD(94, 18).

94 = 18(5) + 4.

18 = 4(4) + 2.

4 = 2(2).

Since the last non-zero remainder is 2, GCD(94, 18) = 2.

GCD(94, 18) = 2

(b) Find integers a and b such that 94a + 18b = GCD(94, 18)

Working backwards from the second equation in problem 1a,

we get:

2 = 18− 4(4)

= 18− 4(94− 18(5))

= (−4)(94) + (21)(18).

a =−4 b = 21

2. Recall that P(S) denotes the power set of the set S. Find a set A
such that A ∩P(A) 6= ∅, or, if there is no such set, explain clearly and
using correct grammar why no such set exists. Be sure to use correct
notation.

There are many such examples. Probably the simplest is A =
{∅}. Then P(A) = {∅, {∅}}, so ∅ ∈ A∩P(A). Another example

would be A = {1, {1}}.

A =

Explanation if appropriate:

{∅}



3. Find a collection {In : n ∈ N} of non-empty intervals in R such that
In+1 ⊆ In for all n ∈ N (that is, I1 ⊇ I2 ⊇ I3 ⊇ · · ·) and ∩∞n=1In = ∅.

One way to do this is to let In = (n,∞) for all n ∈ N. Then

any element of ∩∞n=1In would be a real number which is larger

than every natural number, and there is no such real number.

Another choice of the In’s that works is to let In = (0, 1
n
).

Answer:

In = (n,∞)
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4. Explain what, if anything, is wrong with the following proof by mathe-
matical induction that for any natural number n, n = n+2. (Note: An
explanation is not simply an assertion that the proof is incorrect be-
cause the conclusion is incorrect, or that some step is incorrect because
the conclusion is incorrect.)

Let P (n) be the statement “n = n + 2.”

Base step: We must prove P (1). If n = 1, n = n+2⇒ n0 = (n+2)0 ⇒
1 = 1, which is true. Therefore, P (1) holds.

Inductive step: Assume that n is a natural number and that P (n) is
true. We must prove P (n + 1), that is, we must show that n + 1 =
(n + 1) + 2. By the inductive hypothesis, n = n + 2. Adding 1 to
both sides of this equation gives n + 1 = (n + 2) + 1. Therefore,
P (n)⇒ P (n + 1), so P (n) holds for all natural numbers n.

Explanation:

The problem is that the argument in the base

step does not prove that P (1) is true. The

fact that P (1) implies a true statement does

not mean that P (1) holds, because any

statement--true or false--implies a true

statement.
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5. Use mathematical induction to prove that if k is a positive integer,
then (1 + i)4k = (−4)k, where i is the imaginary unit, that is, i2 = −1.
Be sure to state explicitly the statement to which you are applying
mathematical induction.

Let P (k) be the statement ‘‘(1 + i)4k = (−4)k.’’

Base step:

(1 + i)4·1 = ((1 + i)2)2 = (1 + 2i − 1)2 = (2i)2 = 2i2 =
−4 = (−4)1, so P (1) holds.

Inductive step:

Assume

P (k) holds, that is, (1 + i)4k = (−4)k. We must

prove P (k + 1). (1 + i)4(k+1) = (1 + i)4k(1 + i)4 =
(−4)k(1 + i)4(by the inductive hypothesis) =
(−4)k(−4)(by the proof in the base step) =
(−4)k+1. Therefore, P (k + 1) holds. By the

Principle of Mathematical Induction, P (k)
holds for all k ≥ 1.
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6. Suppose that a0 = 0, a1 = 3, and an = 5an−1 − 4an−2 for n > 1. Use
mathematical induction to prove that an = 4n − 1 for all non-negative
integers n. Be sure to state explicitly the statement to which you are
applying mathematical induction.

Let P (n) be the statement ‘‘an = 4n − 1.’’

Base step:

a0 = 0 = 40 − 1, and a1 = 3 = 41 − 1, so P (0) and

P (1) are true.

Inductive step:

Assume that n ≥ 2 and P (k) holds for all k < n.
Then, in particular, an−1 = 4n−1 − 1 and an−2 =
4n−2 − 1. Therefore, an = 5an−1 − 4an−2 = 5(4n−1 −
1)− 4(4n−2 − 1) = 5(4n−1)− 5− 4n−1 + 4 = 4(4n−1)− 1 =
4n − 1. Hence, P (n) holds. By the Principle of

Complete Induction, P (n) holds for all n ≥ 0.
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7. Let A = {w, x, y} and B = {y, z}. Find (A × B) \ (A ∩ B)2. Be sure
to use correct notation.

A × B = {(w, y), (w, z), (x, y), (x, z), (y, y), (y, z)} and A ∩ B = {y},
so (A ∩B)2 = {(y, y)}. Therefore, (A×B) \ (A ∩B)2 =
{(w, y), (w, z), (x, y), (x, z), (y, z)}.

Answer:

{(w, y), (w, z), (x, y), (x, z), (y, z)}

8. Let A = {1, 2, 3, 4}. Find a relation R on A which contains (1, 2), (2, 3),
and (1, 3) such that R is symmetric but not transitive.

In order that R be symmetric, it must include (2, 1), (3, 2), and

(3, 1). Since R is not to be transitive, there must be (x, y) ∈
R and (y, z) ∈ R such that (x, z) 6∈ R. Since (1, 2) ∈ R and

(2, 1) ∈ R, if we do not include (2, 2) in R, R will not be transitive.

Therefore, we can take R to be {(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)}.

Answer:

{(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)}
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9. Define a relation ∼ on R by x ∼ y if and only if x − y is a rational
number. Prove that ∼ is an equivalence relation on R.

Proof:

∼ is reflexive because if x ∈ R, then x − x = 0,
which is rational.

∼ is symmetric because if x ∼ y, then x − y is

rational, so y − x = −(x − y) is also rational,

that is, y ∼ x.
∼ is transitive because if x ∼ y and y ∼ z, then

x−y and y−z are rational, so x−z = (x−y)+(y−z)
is also rational, that is, x ∼ z.
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10. Suppose that m and n are positive integers such that m ≡ n(mod 3).
Does it follow that 2m ≡ 2n(mod 3)? Explain your answer.

If we take m = 1 and n = 4, then m ≡ n(mod 3). However,

21 = 2, and 24 = 16, but 16 − 2 = 14, which is not divisible

by 3. Therefore, we can take m = 1, n = 4. (There are other

possibilities, as well.)

Answer and explanation:

The answer is “No.” m = 1, n = 4 provide a counterexample.

11. Let R be the relation on N defined by xRy if and only if x divides
2y. For each of the following properties, put a check (X) next to each
property satisfied by R and put an “X” next to each property not
satisfied by R. Give a brief explanation for each answer.

�X Reflexive

If x ∈ N, then x|2x so xRx.

�× Symmetric

1|2 · 3 so 1R3, but 3 - 2 · 1, so 3 6 R1.

�× Anti-symmetric

1|2 · 2 so 1R2, and 2|2 · 1, so 2R1, but 1 6= 2.

�× Transitive

4|2 · 2 so 4R2, and 2|2 · 1, so 2R1, but 4 - 2 · 1 so 4 6 R1.

�× An equivalence relation on N
R is not symmetric (or transitive).
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