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Abstract

In their 2007 paper, Jarvis, Kaufmann, and Kimura defined the full orbifold
K-theory of an orbifold X, analogous to the Chen-Ruan orbifold cohomology
of X in that it uses the obstruction bundle as a quantum correction to the
multiplicative structure. We give an explicit algorithm for the computation
of this orbifold invariant in the case when X arises as an abelian symplectic
quotient. To this end, we introduce the inertial K-theory associated to a
T -action on a stably complex manifold M , where T is a compact abelian
Lie group. Our methods are integral K-theoretic analogues of those used in
the orbifold cohomology case by Goldin, Holm, and Knutson in 2005. We
rely on the K-theoretic Kirwan surjectivity methods developed by Harada and
Landweber. As a worked class of examples, we compute the full orbifold K-
theory of weighted projective spaces that occur as a symplectic quotient of a
complex affine space by a circle. Our computations hold over the integers,
and in the particular case of these weighted projective spaces, we show that
the associated invariant is torsion-free.
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1. Introduction

Orbifolds and their invariants, including homotopy groups, cohomology rings, and
K-theory rings, are an active area of current research. Much recent work concerns
stringy versions of these invariants (which take into account the so-called twisted
sectors), motivated by the seminal work of Dixon, Harvey, Vafa, and Witten [12].
Examples of such invariants are the orbifold cohomology of Chen and Ruan [10]
and the full orbifold K-theory introduced by Jarvis, Kaufmann, and Kimura [22]
and further developed by Becerra and Uribe [6].

The main result of this manuscript is the complete description of the full orb-
ifold K-theory of abelian symplectic quotients, using techniques from equivariant
symplectic geometry. The examples to which these methods apply include many
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orbifold toric varieties (or smooth toric Deligne-Mumford stacks) as discussed in
e.g. [8, 9, 14, 21, 23], including weighted projective spaces, a topic of active current
research [5, 7, 11, 16, 20, 30]. Another class of examples are the orbifold weight
varieties of [25] and [14, Section 8].

We introduce a new ring, called inertial K-theory, associated to a T -action on
a manifold M , where T is a compact abelian Lie group and M is a stably complex
manifold. This ring generalizes the stringy K-theory defined by Becerra and Uribe
[6, Definition 2.1], which applies to a locally free T -action on M .1 In contrast,
the definition of inertial K-theory does not require that T act locally freely. An
important special case is when X is a Hamiltonian T -space. In this setting, the
restriction map to the T -fixed set allows us to simplify the product for the purposes
of computation. We then use an analogue of the Kirwan surjectivity theorem from
equivariant symplectic geometry to prove that the inertial K-theory surjects onto (an
integral lift of) the full orbifold K-theory of [22].

We take a moment to discuss other versions of K-theory for orbifolds discussed
in the literature. In [22], the authors also introduce the stringy K-theory K.X;G/

associated to a smooth projective variety X with an action by a finite group G.2 In
this case, the G-invariant part of K.X;G/, which in [22] is called the small orbifold
K-theory, is isomorphic as a vector space, but not as a ring, to the orbifold K-theory
of the global quotient X D ŒX=G! as defined by Adem and Ruan [1]. In the setting
of a global quotient by a finite group, the full orbifold K-theory of [22] contains
the small orbifold K-theory K.X;G/G as a subring. However, the full orbifold K-
theory is far more general; in particular, it may be defined for stacks which are not
global quotients.

Our definition of inertial K-theory NK˘
T .M/ follows ideas introduced by

Goldin, Holm, and Knutson [14] in the setting of cohomology. The ring NK˘
T .M/

is well defined for any stably complex T -space M . In the case when the T -action is
locally free, NK˘

T .M/ is the stringy K-theory of Becerra and Uribe and in particular
is isomorphic to (an integral lift of) the full orbifold K-theory of the associated
orbifold [6, Section 2].

When the T -action is not locally free, then as far as we are aware, the inertial
K-theory ring NK˘

T .M/ is a new ring which has not appeared previously in
the literature and, does not correspond to the K-theory of a stack. The point
of introducing NK˘

T .M/ is that we can use it along with integral K-theoretic
analogues [18, 19] of Kirwan surjectivity to compute the full orbifold K-theory

1What the authors in [6] call ’stringy K-theory’ is analogous to the full orbifold K-theory of [22]
in the case that the orbifold is a global quotient by an abelian Lie group.

2The stringy K-theory of [22] is defined only when G is finite, and differs from the stringy K-
theory of Becerra and Uribe [6].
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of orbifolds X arising as abelian symplectic quotients. For example, orbifold toric
varieties (as studied e.g. in [26]) arise in this manner via the Delzant construction.

Our computations depend on an inertial K-theory analogue of standard lo-
calization results in equivariant symplectic geometry. Specifically, when M is a
Hamiltonian T -space, the stringy product on NK˘

T .M/ may be reformulated using
the T -fixed point sets and their normal bundles, simplifying computations. This is
called the ?-product, and mimics a similar product in orbifold cohomology as in
[14]. Our main theorem, proven in Section 3, is the following.

Theorem 1.1 Let T be a compact connected abelian Lie group, and .M;!;ˆ/ a
Hamiltonian T -space with proper moment map ˆ W M ! t!: Assume that ˛ 2 t! is
a regular value of ˆ, so that T acts locally freely on ˆ"1.˛/. Then the inclusion
" W ˆ"1.˛/ ,! M; induces a ring homomorphism in inertial K-theory:

# W NK˘
T .M/

!! !! NK˘
T .ˆ"1.˛//

Š !! Korb.Œˆ"1.˛/=T !/ DW Korb.ŒM==˛T !/

(1.1)
from the inertial K-theory NK˘

T .M/ of M onto the integral full orbifold K-theory
Korb.ŒM==˛T !/ of the quotient orbifold ŒM==˛T ! WD Œˆ"1.˛/=T !. Furthermore, this
map is surjective.

We summarize the steps for the proof of this theorem and its use in effective
computations. The key tool is the ring NK˘

T .M/ of the original Hamiltonian T -
space M . As a vector space NK˘

T .M/ D L
t2T KT .M t /, where M t consists of

fixed points of the t action on M , for t 2 T . For each t , KT .M t / may be computed
using well-known methods in equivariant topology (see e.g. [15, 17]). We may also
apply the ordinary K-theoretic Kirwan surjectivity theorem, which states that the
map #t induced by inclusion from K!

T .M t / to K!
T .ˆ"1.0/\M t / is a surjection [18].

However, the ring structure on NK˘
T .M/ is not the obvious one on

L
t2T KT .M t /.

Thus the main technical challenge, as was the case in [14], is to prove that the
Kirwan map # given by (1.1) is indeed a ring homomorphism.

An additional benefit of our point of view is that NK˘
T .M/ surjects onto the full

orbifold K-theory of any of its orbifold symplectic quotients (at any regular value
˛). This is because the isotropy information for every orbifold symplectic quotient
ŒM==˛T ! is contained in the ring NK˘

T .M/ when M is a Hamiltonian T -space.
As an illustration of our surjectivity theorem, in Section 4 we calculate the orbifold
cohomology of those weighted projective spaces that occur as symplectic reductions
of Cn by a linear S1-action. We will discuss symplectic toric orbifolds in greater
detail in a subsequent paper.
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2. The inertial K-theory of a stably complex T -space

Throughout, T will denote a compact connected abelian Lie group (i.e. a compact
torus). In this section, we define a new ring, the inertial K-theory, associated to
a stably complex T -manifold M . The definition is similar in spirit to that of the
inertial cohomology associated to M as in [14]. When M is a Hamiltonian T -
space, this inertial K-theory ring gives rise to a surjective ring homomorphism onto
the full orbifold K-theory defined by [22] of the symplectic quotient M==˛T .

2.1. The definition of inertial K-theory

We begin by defining the inertial K-theory additively as a KT -module. Suppose M

is a stably complex T -space in the sense of [14]. Since T is abelian, each M t is a
T -space for t 2 T .

Definition 2.1 The inertial K-theory NK˘
T .M/ of a stably complex T -space M

is defined, as a KT .pt/-module, as

NK˘
T .M/ WD

M

t2T

KT .M t /: (2.1)

The grading ˘ is with respect to group elements of T ; as we will show in
Definition 2.3, the product of a homogeneous t1-class and a homogeneous t2-class
is a homogeneous .t1 ! t2/-class. Here KT .X/ denotes the integral T -equivariant
K-theory of Atiyah and Segal [28]. In the case when T acts with finite stabilizers,
NK˘

T .M/ coincides with [6, Definition 2.1] and with the full orbifold K-theory of
[22] by [6, Section 2].

We now proceed with the definition of the product on NK˘
T .M/ which follows

that of [6] and [14]. We begin with some observations about the normal bundle to the
fixed point set M H for a fixed subgroup H " T ; these lead to a simple description
(using logweights) of the obstruction bundle with respect to which we twist the
product. Let V be a connected component of M H and let p 2 V . The linear action
by H on each fiber TpM ˚$ (where $ is the trivial stabilization in the stably complex
structure) is the identity on precisely TpV ˚ $ , so there is an induced linear action
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of H on the normal bundle %.V;M/ WD .TM jV /=T V Š .TM ˚ $/=.T V ˚ $/ over
V " M H . Since H preserves the almost complex structure on TM ˚ $ , it follows
that %.V;M/ is a complex vector bundle. The (complex) rank of %.V;M/ may vary
as V varies over the components of M H .

We may write
%.V;M/ Š

M

"2bH
%.V;M/"; (2.2)

where OH denotes the character group of H and %.V;M/" is the subbundle of
%.V;M/ on which H acts by weight &. Each element t 2 H acts on a fiber
%p.V;M/" with eigenvalue exp.2'ia".t//, for a constant a".t/ 2 Œ0;1/ called the
logweight of t on %.V;M/".

Now let
eM WD

G

.t1;t2/2T $T

M t1;t2

where M t1;t2 is the submanifold of M consisting of points fixed simultaneously by
t1 and t2. For each pair .t1;t2/ 2 T $ T , let Ot1;t2

be the union over all connected
components V of M t1;t2 of Ot1;t2

jV , where

Ot1;t2
jV WD

M

a!.t1/Ca!.t2/Ca!..t1t2/"1/D2

%.V;M/" (2.3)

is the complex subbundle of %.V;M/ given by the component on which the sum of
the logweights of t1, t2, and .t1t2/"1 is 2.

Definition 2.2 The obstruction bundle O ! eM is the (disjoint) union of the
bundles Ot1;t2

in (2.3) for all pairs t1;t2 2 T , i.e.

O WD
G

.t1;t2/2T #T

V c:c: M t1;t2

Ot1;t2
jV D

G

.t1;t2/2T $T

Ot1;t2
;

where “c.c.” denotes “connected component of”.
Let (.Ot1;t2

jV / WD )"1.Ot1;t2
j!V / denote the T -equivariant K-theoretic Euler

class of this bundle Ot1;t2
jV ! V . We define the virtual fundamental class of eM

to be the sum
(.O/ WD

X

.t1;t2/2T #T

V c:c: M t1;t2

(.Ot1;t2
jV /:

We note that this virtual fundamental class is also sometimes called a ‘quantum
correction’ in the literature. (The sense in which it is a ‘correction’ can be seen
in Definition 2.3 below.) We now define the product on NK˘

T .M/. By extending
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linearly, it clearly suffices to define the product b1 ˇb2 of two homogeneous classes
b1 2 NKt1

T .M/ D KT .M t1/ and b2 2 NKt2

T .M/ D KT .M t2/: Let ej W M t1;t2 ,!
M tj denote the canonical T -equivariant inclusion map for any t1;t2 2 T and j D
1;2; and let e3 W M t1;t2 ,! M t1t2 denote the inclusion map into points fixed by the
product t1t2.

Definition 2.3 Let M be a stably complex T -manifold and NK˘
T .M/ its inertial

K-theory. Let t1;t2 2 T: The ˇ product on the inertial K-theory NK˘
T .M/ is

defined, for b1 2 NKt1

T .M/ and b2 2 NKt2

T .M/, by

b1 ˇ b2 D .e3/Š.e
!
1 b1 ! e!

2 b2 ! (.O//; (2.4)

where ! denotes the usual product in the T -equivariant K-theory KT .M t1;t2/,
and the subscript Š denotes the K-theoretic push-forward along an inclusion. By
extending linearly, ˇ is defined on all of NK˘

T .M/.

Note that for b1 2 NKt1

T .M/ and b2 2 NKt2

T .M/, the product b1 ˇ b2 2
NKt1t2

T .M/ is by definition a homogeneous class in the t1t2-summand of NK˘
T .M/.

If the Euler class were not included in the definition, the product would not be
associative.

It is straightforward to show that NK˘
T .M/ is a KT .pt/-algebra.

Proposition 2.4 Let M be a stably complex T -manifold. Then NK˘
T .M/ is a

commutative, associative, unital algebra over the ground ring KT .pt/ with the
multiplication ˇ of Definition 2.3.

Remark 2.5 As observed in [6, Section 2], if T acts on M locally freely then
NK˘

T .M/˝Q is isomorphic as an algebra to the full orbifold K-theory Korb.ŒM=T !/

[22] of the quotient M=T . More specifically, the natural map NK˘
T .M/ !

NK˘
T .M/ ˝ Q is an integral lift of Korb.ŒM=T !/ as rings.

In view of the proposition and remark above, we will henceforth occasionally
abuse language and refer to NK˘

T .M/ as being isomorphic to Korb.ŒM=T !/. The
precise statement is that when T acts locally freely on M , the ring NK˘

T .M/ is an
integral lift of Korb.ŒM=T !/.

Proof of Proposition 2.4: The facts that NK˘
T .M/ is commutative and that 1 2

KT .M id / acts as the unit element is immediate from the definition (2.4). The
KT .pt/-algebra structure is also immediate from the corresponding structure on
each summand. It remains to show associativity. Although we are not assuming
that the T -action on M is locally free, the proof of associativity in our T -
equivariant situation nevertheless follows precisely that of [6] (and [22]), so we
do not reproduce it here.
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2.2. The product on the fixed point set

Localization is a standard technique in equivariant topology. Given M a stably
complex T -manifold and a T -equivariant algebraic/topological invariant, it is
natural to ask whether the invariant is encoded in terms of the T -fixed point set
M T and local T -isotropy data near the fixed points. The purpose of this section
is to develop some inertial K-theoretic analogues of standard localization theory in
equivariant topology. The presence of the quantum correction complicates matters,
so we begin by defining a new ring structure, denoted by ?, on KT .M T / ˝ ZŒT !,
where ZŒT ! is the group ring on T . This is a K-theoretic version of the ? product
on H !

T .M T / ˝ ZŒT ! introduced in [14]. When M is a Hamiltonian T -space, we
show in Section 2.3 that the inertial K-theory injects into KT .M T / ˝ ZŒT ! as a
ring, much as ordinary equivariant K-theory KT .M/ injects into KT .M T / in such
a case. This is the main motivation for the product ?: the new product provides a
different means of computing the product given in (2.4).

For simplicity, we assume throughout that M T has finitely many connected
components. In this case

KT .M T / ˝ ZŒT !D
M

W c:c: M T

.KT .W / ˝ ZŒT !/;

where the direct sum is taken over connected components of M T . When we refer
to the restriction of a class in KT .M T / ˝ ZŒT ! to a connected component W , we
mean the summand corresponding to W . As in the ˇ case, it suffices to define the ?

product of two homogeneous classes +1 ˝ t1 and +2 ˝ t2 in KT .M T /˝ZŒT !; where
t1;t2 2 T and +1;+2 2 KT .M T /: Moreover, it also suffices to specify the value of
the product restricted to each connected component W of M T .

Definition 2.6 Let +j ˝ tj 2 KT .M T / ˝ ZŒT ! for j D 1;2, where tj 2 T , be two
homogeneous classes. The ? product on KT .M T / ˝ ZŒT ! is defined by

.+1˝t1/?.+2˝t2/jW WD

2

4+1jW ! +2jW !
Y

I!%$.W;M/

(.I"/a!.t1/Ca!.t2/"a!.t1t2/

3

5˝t1!t2;

(2.5)
for each connected component W of M T . Here (.I"/ 2 KT .W / denotes the T -
equivariant K-theoretic Euler class of I", and %.W;M/ denotes the normal bundle
of W in M . By extending linearly over the group algebra ZŒT !, the ? product is
defined on all of KT .M T / ˝ ZŒT !.

The proof that the ? product is associative is straightforward and identical to
that of [14, Theorem 2.3], so we do not repeat the argument, but record the result
here.
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Theorem 2.7 Let M be a stably complex T -manifold. The multiplication ? of
Definition 2.6 makes KT .M T / ˝ ZŒT ! into a commutative, associative, unital
algebra over the ground ring KT .pt/.

As stated above, the motivation for introducing KT .M T / ˝ ZŒT ! with the
? product is to allow for a kind of “localization” theorem in inertial K-theory.
Consider the inclusion it W M T ,! M t for each t 2 T . This induces a map
i!
t W KT .M t / ! KT .M T / ˝ t " KT .M T / ˝ ZŒT !. Combining the i!

t for each
t 2 T; we obtain a map of KT -modules

i!
NK W NKT .M/ %! KT .M T / ˝ ZŒT !; (2.6)

which we refer to as a “restriction map,” since it is induced by the geometric
inclusion M T ,! M t for each t 2 T: This morphism i!

NK is in fact a ring
homomorphism with respect to the ˇ and the ? products.

Theorem 2.8 Let M be a stably complex T -manifold. Let KT .M T / ˝ ZŒT ! be
endowed with the product ? of Definition 2.6. Then the restriction map i!

NK W
.NK˘

T .M/;ˇ/ ! .KT .M T / ˝ ZŒT !;?/ is a KT .pt/-algebra homomorphism.
Proof: This proof follows that of Theorem 3.6 of [14], though the explanation
below is self-contained and works directly in terms of bundles instead of Euler
classes.

We begin by noting that for any t1;t2 2 T; the exponent a".t1/Ca".t2/%a".t1t2/

appearing in the definition of the ? product is always either 0 or 1. Using the
defining properties of Euler classes, we may deduce

Y

I!%$.W;M/

(.I"/a!.t1/Ca!.t2/"a!.t1t2/ D (

0

BB@
M

I!$".W;M/

a!.t1/Ca!.t2/"a!.t1t2/D1

I"

1

CCA;

so the expression appearing in the definition of the ? product is the Euler class of
a certain sub-bundle of %.W;M/. We will now show that this sub-bundle has a
different description. Given & such that a".t1/ C a".t2/ % a".t1t2/ D 1, then either
a".t1t2/ ¤ 0, in which case

a".t1/ C a".t2/ % a".t1t2/ D a".t1/ C a".t2/ % .1 % a"..t1t2/"1/ D 1

H) a".t1/ C a".t2/ C a"..t1t2/"1/ D 2

H) I" " Ot1;t2
jW ;

or else a".t1t2/ D 0, in which case I" " %.M t1;t2 ;M t1t2/jW . Conversely, if I"
is an isotypic component of Ot1;t2

jW ˚ %.M t1;t2 ;M t1t2/jW , then a similar simple
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argument shows that a".t1/ C a".t2/ % a".t1t2/ D 1. Thus we have shown that
M

I!$".W;M/

a!.t1/Ca!.t2/"a!.t1t2/D1

I" D Ot1;t2
jW ˚ %.M t1;t2 ;M t1t2/jW : (2.7)

This makes it clear that the obstruction bundle overM t1;t2 enters into the ? product
given by (2.3) as well.

To prove that i!
NK is a ring homomorphism, it suffices to check the statement

for homogeneous elements. Let b1 2 KT .M t1/ and b2 2 KT .M t2/. Then for each
fixed point component W of M T , we have

i!
NK.b1 ˇ b2/jW D i!

NK Œ.e3/Š.e
!
1 b1 ! e!

2 b2 ! (.Ot1;t2
//!jW

D b1jW ! b2jW ! i!
NK Œ.e3/Š.(.Ot1;t2

//!jW
D b1jW ! b2jW ! (.Ot1;t2

/jW ! (.%.M t1;t2 ;M t1t2//jW
D b1jW ! b2jW ! (.Ot1;t2

jW ˚ %.M t1;t2 ;M t1t2/jW /:

The equivalence (2.7) of bundles allows us to conclude that this product b1 ˇ b2

restricted to a component W of M T agrees with the product of i!
NK.b1/jW ?

i!
NK.b2/jW as in (2.5), as desired.

2.3. The case that M is a Hamiltonian T -space

We now turn to the special case that .M;!/ is a Hamiltonian T -space. The
motivation for the definition of the ? product on KT .M T / ˝ ZŒT ! is to provide
a target for a localization theoreom. As in the case of ordinary equivariant (rational)
cohomology and equivariant K-theory, the fixed points M T of a Hamiltonian T -
space play a special role in inertial K-theory. In particular, we have the following
theorem.

Theorem 2.9 Let .M;!;ˆ/ be a Hamiltonian T -space. Suppose there exists a
component of ˆ which is proper and bounded below, and further suppose that M T

has only finitely many connected components. The map of rings given by

i!
NK W .NKT .M/;ˇ/ %! .KT .M T / ˝ ZŒT !;?/

is injective.
Proof: We have already shown in Theorem 2.8 that i!

NK is an algebra homomor-
phism. Thus we need only show injectivity. Since T is abelian, standard symplectic
techniques allow us to conclude that .M t ;!jM t ;ˆjM t / is also a Hamiltonian T -
space for each t 2 M . Furthermore, the second author and Landweber prove in [19]
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that, for any Hamiltonian T -space M satisfying the assumptions of our theorem, the
inclusion M T ,! M t induces an injection KT .M/ ,! KT .M T /. Thus each map

i!
t W KT .M t / %! KT .M T / ˝ t

is an injection, which implies that the map i!
NK defined by an i!

t on each component
is also injective, as desired.

It is clear from the proof that the statement holds for any stably complex T -space
M with the property that there is an injection

KT .M t / %! KT .M T /

for every t 2 T . In the case of equivariant cohomology, these spaces are called
robustly equivariantly injective in [14]. Thus, Theorem 2.9 holds also in the case
that M is robustly equivariantly injective in K-theory.

3. Surjectivity from inertial K-theory to full orbifold K-theory

The main motivation for our definition of the inertial K-theory of a T -space M is
that we can exploit it to give explicit computations of the full orbifold K-theory
of abelian symplectic quotients. Our methods build on the Kirwan surjectivity
techniques in ordinary (non-orbifold) K-theory as developed in [18]. In this
section we prove a general surjectivity theorem onto the Korb.ŒM==˛T !/ of abelian
symplectic quotients and discuss in some detail the computation of the kernel of
the surjection. Indeed, for a wide class of examples, this method yields an explicit
description via generators and relations of Korb.ŒM==˛T !/. In Section 4 we will give
an explicit illustration of the use of our techniques in the case of weighted projective
spaces occurring as symplectic reductions.

We take a moment here to discuss the technical hypotheses on the moment map
ˆ to be used in this section. A more detailed discussion of these hypotheses may be
found in [19, beginning of Section 3]. For the surjectivity theorems (Theorems 3.4
and 3.7) it is only necessary to assume that ˆ is proper; this ensures that the tools
of equivariant Morse theory may be applied to kˆk2. However, for the computation
of the kernel of the surjective Kirwan map as given in Theorem 3.8, we need the
additional technical assumption that there is a component of ˆ that is proper and
bounded below, and that the fixed point set M T has only finitely many connected
components. In practice this is not a very restrictive condition (see [19, Section 3]
for further discussion).
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3.1. Surjectivity to Korb.Œˆ"1.˛/=T !/

Here we show that under some mild technical assumptions, the inertial K-theory
associated to a Hamiltonian T -space .M;!;ˆ/ defined in the previous section
surjects onto the full orbifold K-theory of the symplectic quotient ŒM==˛T ! WD
Œˆ"1.˛/=T !; where ˛ is a regular value of ˆ.

We begin by recalling the setup. As above, T denotes a compact connected
abelian Lie group (i.e. a connected compact torus). Let .M;!;ˆ/ be a finite-
dimensional Hamiltonian T -space, and assume that the moment map ˆ W M ! t!

is proper. Suppose that ˛ 2 t! is a regular value of ˆ. Then the level set ˆ"1.˛/

is a submanifold of M , and T acts locally freely on ˆ"1.˛/. Hence the quotient
Œˆ"1.˛/=T ! is an orbifold. By results of Becerra and Uribe,

Korb.Œˆ"1.˛/=T !/ Š NK˘
T .ˆ"1.˛//; (3.1)

where by the left hand side we mean (by slight abuse of notation) an integral lift of
the orbifold K-theory, as in Remark 2.5.

We now show that the right-hand side of (3.1) is computable, using techniques
from equivariant symplectic geometry. The inclusion of the level set

" W ˆ"1.˛/ ,%! M

is T -equivariant and induces a map in equivariant K-theory,

"! W KT .M/ %! KT .ˆ"1.˛//:

The fixed points sets M t are also Hamiltonian T -spaces, so we also have

"! W KT .M t / %! KT .ˆ"1.˛/t /:

Here by abuse of notation we denote also by " the inclusions ˆ"1.˛/t ,! M t , for
all t 2 T . Hence there exists a map (also denoted "!)

"! W NKT .M/ D
M

t2T

KT .M t / %! NKT .ˆ"1.˛// D
M

t2T

KT .ˆ"1.˛/t / (3.2)

defined in the obvious way on corresponding summands. It is immediate from the
definition that the map is an additive homomorphism.

What is not at all obvious is that the map "! of (3.2) is also a ring ho-
momorphism with respect to the multiplicative structure ˇ on both sides, and
furthermore that "! provides an effective way of computing NKT .ˆ"1.˛//, and
hence Korb.Œˆ"1.˛/=T !/. We now address each of these issues in turn.
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As observed in [13] and [14], it is not necessarily true that a general T -
equivariant map of T -spaces f W X ! Y induces a ring map f ! W NH !

T .Y / !
NH !

T .X/ on inertial cohomology, with respect to the ^ product in inertial
cohomology. Nevertheless, if a T -equivariant inclusion " W X ,! Y behaves well
with respect to the fixed point sets, [14, Proposition 5.1] states that "! is a ring
homomorphism with respect to the new product in inertial cohomology. We now
prove a K-theoretic analogue of this fact.

Proposition 3.1 Let Y be a stably complex T -space. Let " W X ,! Y be a T -
equivariant inclusion, and suppose also that X is tranvserse to all Y t ;t 2 T: Then
the map "! W NK˘

T .Y / ! NK˘
T .X/ induced by inclusion is a ring homomorphism

with respect to ˇ.
Proof: The argument is nearly the same as that given for equivariant cohomology
[14, Proposition 5.1], so we do not fully reproduce it here. The only additional item
to check in our K-theoretic setting is that the following diagram in T -equivariant
K-theory

KT .Y t1;t2/
.e1;2

3 /Š
!!

!!
""

KT .Y t1t2/

!!
""

KT .X t1;t2/
.e1;2

3 /Š
!! KT .X t1t2/

(3.3)

commutes, i.e. "!.e1;2
3 /Š D .e1;2

3 /Š"
!; where by abuse of notation we denote by "!

both of the inclusions X t1t2 ,! Y t1t2 and X t1;t2 ,! Y t1;t2 ; and also by e1;2
3 both

of the inclusions X t1;t2 ,! X t1t2 and Y t1;t2 ,! Y t1t2 : Recall that the definition of
the pushforward in equivariant K-theory uses the Thom isomorphism with respect
to a Spinc structure on the relevant normal bundles to an inclusion. In this case,
both normal bundles in question have natural T -equivariant complex structures, so
they have canonical Spinc structures. Hence, in order to check that (3.3) commutes,
it suffices to check that the normal bundle %.Y t1;t2 ;Y t1t2/ restricts precisely to the
normal bundle %.X t1;t2 ;X t1;t2/ via "!: This follows from the transversality of X to
all fixed points Y t , for any t 2 T .

Although the transversality hypothesis of Proposition 3.1 is rather restrictive,
there is a natural class of examples in which the conditions are satisfied.

Lemma 3.2 Let .M;!;ˆ/ be a Hamiltonian T -space with proper moment map
ˆ W M ! t!: Assume that ˛ 2 t! is a regular value of ˆ. Then the inclusion of
the level set " W ˆ"1.˛/ ,! M satisfies the hypotheses of Proposition 3.1.

This is a purely topological statement and its proof can be found in [14, Theorem
6.4]. We may conclude that we have a ring homomorphism onto the integral full
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orbifold K-theory

# W NK˘
T .M/

!! !! NK˘
T .ˆ"1.˛//

Š !! Korb.Œˆ"1.˛/=T !/: (3.4)

We refer to this composition # as the orbifold Kirwan map. We now recall the fol-
lowing, which is the analogue of the Kirwan surjectivity theorem (originally proved
for rational Borel-equivariant cohomology) in integral K-theory [18, Theorem 3.1].
We state the theorem only in the special case needed here.

Theorem 3.3 ([18]) Let .M;!/ be a Hamiltonian T -space with proper moment
map ˆ W M ! t!: Assume that ˛ 2 t! is a regular value of ˆ. Then the map "!

induced by the inclusion " W ˆ"1.˛/ ,! M;

"! W KT .M/ %! KT .ˆ"1.˛//;

is a surjection.
The following is now straightforward.

Theorem 3.4 Let .M;!;ˆ/ be a Hamiltonian T -space with proper moment map
ˆ W M ! t!: Assume that ˛ 2 t! is a regular value of ˆ, so that T acts locally freely
on ˆ"1.˛/. Then the orbifold Kirwan map to the orbifold K-theory

# W NK˘
T .M/ %! Korb.Œˆ"1.˛/=T !/

defined in (3.4) is a surjective ring homomorphism.
Proof: Proposition 3.1 and Lemma 3.2 guarantee that # is a ring homomorphism,
so it is enough to check that "! is surjective. Since "! in (3.2) is defined separately
on each summand, the surjectivity follows from surjectivity on each summand. We
observe that for a Hamiltonian T -space .M;!;ˆ/ as given, for any t 2 T , the fixed
set M t is itself a Hamiltonian T -space with moment map the restriction ˆjM t . In
particular, since ˆ"1.˛/t D .ˆjM t /"1.˛/; Theorem 3.3 implies that each

"! W KT .M t / %! KT .ˆ"1.˛/t /

is surjective, completing the proof.
Thus, in order to compute Korb.Œˆ"1.˛/=T !/, we must explicitly compute

NK˘
T .M/ and identify the kernel of #. We discuss the kernel in Section 3.2. As

for the domain NK˘
T .M/, we observe that in fact a different, smaller, ring already

surjects onto NK˘
T .ˆ"1.˛//. This is highly relevant for computations, since the

domain of the orbifold Kirwan map (3.4) is an infinite direct sum, while the smaller
subring is a finite direct sum (and thus more manageable for explicit computations).
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The essential idea is similar to those already developed in [14] and subsequently
in [13]. Since T acts locally freely on ˆ"1.˛/ and because ˆ"1.˛/ is compact (since
ˆ is proper), there are only finitely many orbit types, and hence only finitely many
elements t 2 T occur in the stabilizer of a point in ˆ"1.˛/. In particular, ˆ"1.˛/t

is non-empty for only finitely many t . Thus in the codomain of the map (3.2), only
finitely many summands are non-zero. It is straightforward to see that the restriction
of # to the direct sum M

t W ˆ"1.˛/t ¤;
KT .M t / (3.5)

itself surjects onto NK˘
T .ˆ"1.˛//. Unfortunately (3.5) is not closed under the

ˇ multiplication on NK˘
T .M/. Hence we introduce the ,-subring of NK˘

T .M/,
which is the smallest subring containing (3.5); this will also surject onto
NK˘

T .ˆ"1.˛//.
Recall that if a torus T acts locally freely on a space Y , then by definition

the stabilizer group Stab.y/ of any point y 2 Y is finite; we call Stab.y/ a finite
stabilizer group. Similarly, given a finite stabilizer group Stab.y/, we call an
element t 2 Stab.y/ a finite stabilizer element. Let , denote the subgroup of
T generated by all finite stabilizer elements, called the finite stabilizer subgroup
of T associated to Y . For any subgroup , of T we may define the following.

Definition 3.5 Let Y be a stably complex T -space and let , be a subgroup of T .
Then

NK%
T .Y / WD

M

t2%
KT .Y t / (3.6)

is a subring of NK˘
T .Y /, called the ,-subring of NK˘

T .Y /.

Remark 3.6 The ,-subring is closed under the ˇ multiplication. This follows
immediately from Definition 2.3 and the comment after it, together with the fact
that , is a subgroup and thus closed under multiplication.

In the case of the level set ˆ"1.˛/ of a Hamiltonian T -action .M;!;ˆ/ with a
proper moment map ˆ, this associated subgroup , will be a finite subgroup of T .3

Hence the direct sum in (3.6) is also finite. The preceding discussion establishes the
following.

Theorem 3.7 Let .M;!;ˆ/ be a Hamiltonian T -space with proper moment map
ˆ W M ! t!: Assume that ˛ 2 t! is a regular value of ˆ, so that T acts locally freely
on ˆ"1.˛/. Let , be the finite stabilizer subgroup of T associated to ˆ"1.˛/. Then

3Although we do not make it explicit in the notation, this subgroup , depends on the choice of
level set ˆ"1.˛/. In [14] the subgroup , is chosen such that #% is surjective for any choice of level
set, so our choice differs slightly from that of Goldin, Holm, and Knutson.
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the restriction #% of the orbifold Kirwan map (3.4) to the ,-subring (3.6),

#% W NK%
T .M/ %! NK˘

T .ˆ"1.˛// Š Korb.Œˆ"1.˛/=T !/;

is a surjective ring homomorphism.

3.2. The kernel of the orbifold Kirwan map

Theorem 3.7 shows that the inclusion of the level set ˆ"1.˛/ ,! M induces a sur-
jective ring homomorphism #% from the ,-subring NK%

T .M/ to NKT .ˆ"1.˛// Š
Korb.Œˆ"1.˛/=T !/. So to compute explicitly the ring Korb.Œˆ"1.˛/=T !/, it then
remains to compute the domain NK%

T .M/ and the kernel ker.#%/ of the orbifold
Kirwan map.

We begin with some comments on the computation of the domain NK%
T .M/. In

a large class of examples, the T -equivariant K-theory of the original Hamiltonian
T -space M is well-known to be explicitly computable. For example, following the
Delzant construction of symplectic toric orbifolds, the original Hamiltonian space
M is just CN , an affine space equipped with a linear T -action, so in particular is T -
equivariantly contractible. In this case, then, the domain NK%

T .M D CN / is simply
a direct sum of j,j copies of KT .pt/ Š R.T /, as an R.T /-module.

Another important class of examples are GKM spaces. Suppose that the
original Hamiltonian T -space .M;!;ˆ/ is GKM in the sense of [17] or [19].
Each fixed point set M t is then also GKM. A specific class of examples are the
homogeneous spaces G=T of compact connected Lie groups G with maximal torus
T , considered as a Hamiltonian T -space with respect to the natural left action of
the maximal torus T (see e.g. [14, Lemma 8.2]). In this situation, the results of
Section 2.3 imply that the natural restriction

i!
NK W .NK˘

T .M/;ˇ/ %! .KT .M T / ˝ ZŒT !;?/

is injective. Furthermore, the image of this injection can be explicitly and
combinatorially described using GKM (“Goresky-Kottwitz-MacPherson”) theory.
Indeed, GKM-type techniques in equivariant cohomology were already used in [14,
Section 8] in order to give explicit computations associated to flag manifolds in
inertial cohomology; the K-theoretic methods using GKM theory in K-theory (as
in [17, 19], and references therein) are analogous.

Now we turn to the computation of the kernel of the orbifold Kirwan map #.
First observe (as in the proof of Theorem 3.4) that for each t 2 ,; M t is itself a
Hamiltonian T -space, with moment map the restriction of ˆ to M t . Thus, for each
t 2 ,; the map induced by inclusion

#t WD "! W KT .M t / %! KT .ˆ"1.˛/t /
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is precisely the ordinary (non-orbifold) Kirwan map for the Hamiltonian T -
space .M t ;!jM t ;ˆjM t /. The kernel of the ordinary Kirwan map for an abelian
symplectic quotient has been explicitly described in [19] following previous work
in cohomology of Tolman and Weitsman [29]. More specifically, [19, Theorem 3.1]
gives a list of ideals in KT .M t / which generates ker.#t /; for reference, we include
the statement below. We fix once and for all a choice of inner product on t!, with
respect to which we define the norm-square kˆk2 W M ! R and identify t Š t!:

Theorem 3.8 ([19, Theorem 3.1]) Let .M;!;ˆ/ be a Hamiltonian T -space.
Suppose there exists a component of ˆ which is proper and bounded below, and
further suppose that M T has only finitely many connected components. Let

Z WD fˆ.C / j C a connected component of Crit.kˆk2/ & M g & t! Š t (3.7)

be the set of images under ˆ of components of the critical set of kˆk2. For - 2 t;
define

M& WD fx 2 M j h&.x/;-i ' 0g;
K& WD f˛ 2 K!

T .M/j˛jM$
D 0g; and

K WD
X

&2Z&t

K& :

Then there is a short exact sequence

0 !! K !! K!
T .M/

' !! K!
T .ˆ"1.0// !! 0;

where # W K!
T .M/ ! K!

T .ˆ"1.0// is the Kirwan map.

Remark 3.9 Although the statement of [19, Theorem 3.1] explicitly refers to the
symplectic quotient M==˛T , it is straightforward to see that the theorem in fact
holds at the level of the T -equivariant K-theory of the level set ˆ"1.0/. Moreover,
although [19, Theorem 3.1] is (for convenience) stated only for the 0-level set
ˆ"1.0/, since T -moment maps are determined only up to an additive constant, it
is straightforward to see that the analogous statement also holds for the case of non-
zero regular values ˛ 2 t! and its corresponding level set ˆ"1.˛/:

Using Theorem 3.8 and localization techniques as described in [19, Section 2],
an explicit list of generators for the kernel of #t may be constructed for each t 2 ,:

Since
ker.#%/ D

M

t2%
ker.#t /;

the kernel of the restricted orbifold Kirwan map #% is therefore obtained by
computing each ker.#t / separately. This completes the explicit description of
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Korb.Œˆ"1.˛/=T !/ in terms of generators and relations for a wide class of abelian
symplectic quotients.

4. Example: the full orbifold K-theory of weighted projective spaces

We now give a complete description of the ring structure of the full orbifold K-
theory of weighted projective spaces obtained as symplectic quotients of Cn by
S1, closing with the worked example of P .1;2;4/. Similar and related results, in
ordinary (i.e. non-orbifold) cohomology and ordinary K-theory, are contained in
[2, 3, 4, 24, 27]. We do not require any mention of a stacky fan as in [8] or of
labelled polytopes as in [26]. The technique here is different from that in [6] because
we use the fact that these spaces occur as symplectic quotients. We also avoid using
the Chern character isomorphism, allowing us to obtain results over Z. In particular,
we prove in Proposition 4.1 that Korb.ŒM !/ has no additive torsion for those weighed
projective spaces ŒM ! obtained as symplectic quotients by a (connected) circle.

Recall that such a weighted projective space is specified by an integer vector in
ZnC1

>0 :
b D .b0;b1;b2;!!! ;bn/; bk 2 Z;bk > 0:

The vector b determines an action of S1 on CnC1, defined by

t ! .z0;z1;:::;zn/ WD .tb0z0;tb1z1;:::;tbnzn/;

for t 2 S1 and .z0;z1;:::;zn/ 2 CnC1: An S1-moment map for this action is given
by

ˆ.z0;z1;:::;zn/ D %1

2

nX

kD0

bkkzkk2:

This is clearly proper and its negative bounded below. Moreover, since the bk are
positive, the only S1-fixed point in CnC1 is the origin f0g 2 CnC1I in particular,
.CnC1/S1 has only finitely many connected components. Any negative moment
map value is also regular, so we may define the weighted projective space P n

b

(sometimes also denoted P n.b/) as the orbifold arising as a symplectic quotient

P n
b WD CnC1==˛S1 D Œˆ"1.˛/=S1!

for a regular (negative) value ˛. The differential structure does not change as ˛

varies, though the symplectic volume does. We note that P n
b may be a non-effective

orbifold: if the integers bi are not relatively prime, i.e. g D gcd.b0;b1;:::;bn/ ¤ 1;

then there is a global stabilizer isomorphic to the cyclic group Zg . Effective or
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not, however, all the hypotheses of the theorems in Section 3 are satisfied for these
weighted projective spaces.

We begin by computing the finite stabilizer subgroup , & S1 for ˆ"1.˛/.
Throughout, we will denote by Z` the cyclic subgroup in S1 given by the `-th roots
of unity fe2(is=` j s D 0;:::;`%1g in S1. Given a non-zero vector z D .z0;z1;:::;zn/

in CnC1, the stabilizer subgroup of z in S1 is precisely

,z WD
\

zk¤0

Zbk
& S1:

In particular, this implies that , is generated by the subgroups Zbk
for each k,

0 ' k ' n; so , D Z` & S1 where

` D lcm.b0;b1;:::;bn/:

Let .s WD e2(is=` 2 S1: Then, by definition, the ,-subring of the inertial K-theory
of the S1-space CnC1 is additively defined to be

NK%
S1.CnC1/ WD

M̀

sD0

KS1..CnC1/)s / Š
M̀

sD0

KS1.pt/ D
M̀

sD0

R.S1/ D
M̀

sD0

ZŒu;u"1!;

where R.S1/ denotes the representation ring of S1 and we use u as the variable
in R.S1/. For the first isomorphism above, we use the fact that the S1-action on
CnC1 is linear, so any fixed-point set for any group element is an S1-invariant affine
subspace of CnC1, hence S1-equivariantly contractible to a point.

We denote by ˛s the element in NK%
S1.CnC1/ which is the identity 1 2

KS1.pt/ Š R.S1/ in the summand corresponding to .s and is 0 elsewhere. These
are clearly additive KS1-module generators of NK%

S1.CnC1/. Hence, in order to
determine the ring structure of the ,-subring of the inertial K-theory, it suffices to
calculate the products ˛sˇ˛t , for 0 ' s;t < `; in inertial K-theory. Since CnC1 with
the given S1-action is a Hamiltonian S1-space with a component of the moment
map which is proper and bounded below (and the fixed point set has finitely many
connected components), from Section 2 we know that the map "!NK is injective (and
in fact, in this case, is an isomorphism). Hence we may use for our computations
the ? product on inertial K-theory as defined in Section 2, instead of the ˇ product.

For any integer s 2 Z; let Œs! denote the smallest non-negative integer congruent
to s modulo `. Also let hqi WD q % bqc denote the fractional part of any rational
number q 2 Q: In our case, the logweight of an element .s 2 , acting on the k-th
coordinate may be explicitly computed to be

ak..s/ D Œbks!

`
D

!
bks

`

"
:
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Hence .s acts on the k-th coordinate as e2(iak.)s/: By the formula for the ? product
in Definition 2.6, we immediately obtain the relation

˛s ? ˛s0 D ˛ŒsCs0*

 
nY

kD0

#
1 % u"bk

$ak.)s/Cak.)s0 /"ak.)s)s0 /
!

(4.1)

among the generators of the twisted sectors, where we have used that the S1-
equivariant K-theoretic Euler class of the S1-equivariant bundle C+ ! pt of S1-
weight ) 2 Z is

(S1.C+/ D 1 % u"+ 2 R.S1/ D ZŒu;u"1!:

Hence the ,-subring may be described as

NK%
S1.CnC1/ Š ZŒu;u"1!Œ˛0;:::;˛`!

%
I; (4.2)

where I is the ideal generated by the relations (4.1) for all 0 ' s;s0 ' ` % 1; i.e.

I WD
*
˛s˛s0 %

 
nY

kD0

#
1 % u"bk

$ak.)s/Cak.)s0 /"ak.)s)s0 /
!

˛ŒsCs0*

ˇ̌
ˇ̌0 ' s;s0 ' ` % 1

+
:

(4.3)
In order to obtain the orbifold K-theory of the symplectic quotient P n

b , we must
now compute the kernel of the K-theory Kirwan map for each sector, i.e.

#s W KS1..CnC1/)s / ! KS1..ˆ"1.%1//)s /

for each 0 ' s ' ` % 1: (Here we have chosen to reduce at the regular value %1.)
As mentioned above, since each .CnC1/)s is itself a Hamiltonian S1-space and its
symplectic quotient by this S1 is again a toric variety, we may apply [19, Theorem
3.1] to obtain

ker.#s/ D
*

Y

kWak.)s/D0;0'k'n

.1 % u"bk /

+
: (4.4)

Here we use the fact that the k-th coordinate line in CnC1 is fixed by .s if and
only if ak..s/ D 0; and that in this case (where we have just an S1-action, not a
larger-dimensional torus) the negative normal bundle with respect to ˆ is in fact all
of the tangent space to the fixed point f0g in .CnC1/)s .

Hence we conclude that the full orbifold K-theory of the weighted projective
space P n

b is given by

Korb.P n
b / D ZŒu;u"1;˛0;:::;˛`!

%
I CJ ;
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where I is the ideal in (4.3) and

J D
*

Y

kWak.)s/D0;0'k'n

.1 % u"bk /

ˇ̌
ˇ̌0 ' s ' ` % 1

+
:

Simple algebra then shows that the full orbifold K-theory of a weighted
projective spaces is torsion-free.

Proposition 4.1 The full orbifold K-theory ring of a weighted projective space P n
b

obtained as a symplectic quotient does not contain (additive Z) torsion.

Proof: It is sufficient to check that each summand

K!
S1..ˆ"1.1//)s /

is torsion-free over Z. This piece is precisely the ring

A D ZŒu;u"1!DQ
kWak.)s/D0;0'k'n.1 % u"bk /

E : (4.5)

Now suppose that f 2 A is a torsion class: that is, there is an integer m ( 2

satisfying m ! f D 0 in A. Let F 2 ZŒu;u"1! be a representative of f . Then
mF must be in the ideal in the denominator of (4.5). But ZŒu;u"1! is a unique
factorization domain, and m is not a unit in ZŒu;u"1!. Thus, since

mF D $ !
Y

.1 % u"bk /;

unique factorization implies that $ is multiple of m. Thus we deduce that F itself is
in the ideal, and hence f D 0 in A.

4.1. A worked example: P 2
.1;2;4/

We now illustrate the computations above using the specific weighted projective
space P 2

.1;2;4/, the orbifold that is the symplectic quotient of C3 equipped with the
S1-action

t ! .z0;z1;z2/ WD .tz0;t2z1;t4z2/:

for t 2 S1;.z0;z1;z2/ 2 C3: We will denote the weight spaces of this C3 by
C.1/;C.2/;C.4/ respectively. In this case ` D lcm.1;2;4/ D 4 so , Š Z4; generated
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by ei2(=4 D i 2 S1: The following chart contains the necessary information for
computing the inertial K-theory of C3.

s 0 1 2 3

.s 1 i %1 %i

.C3/)s C3 C.4/ C.2/ ˚ C.4/ C.4/

a1..s/ 0 1
4

1
2

3
4

a2..s/ 0 1
2 0 1

2

a3..s/ 0 0 0 0
generator of
.s sector

˛0 ˛1 ˛2 ˛3

(4.6)

Using the formula (4.1) given above, we immediately conclude that the product
structure in the inertial K-theory of C3 is given by the following multiplication
table. Recall that ˛0, being the generator of the untwisted (identity) sector, is the
multiplicative identity in the ring, so we need not include it in this table.

˛1 ˛2 ˛3

˛1 .1 % u"2/˛2 ˛3 .1 % u"1/.1 % u"2/˛0

˛2 .1 % u"1/˛0 .1 % u"1/˛1

˛3 .1 % u"1/.1 % u"2/˛2

(4.7)

Let I be the ideal generated by the product relations in (4.7). Then we have

NK%
S1.C3/ Š ZŒu;u"1!Œ˛0;˛1;˛2;˛3!

%
I C h˛0 % 1i:

We may also explicitly compute the kernels of the K-theory Kirwan maps #s for
0 ' s ' 3; according to (4.4). We have

ker.#0/ D h˛0.1 % u"1/.1 % u"2/.1 % u"4/i;
ker.#1/ D h˛1.1 % u"4/i;
ker.#2/ D h˛2.1 % u"2/.1 % u"4/i;
ker.#3/ D h˛3.1 % u"4/i:

Let J be the ideal generated by ker.#s/ for all s, 0 ' s ' 3: We conclude that

Korb.P 2
1;2;4/ Š ZŒu;u"1!Œ˛0;˛1;˛2;˛3!

%
I C h˛0 % 1i CJ : (4.8)
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