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Abstract

Let G be a compact torus acting on a compact symplectic manifold M
in a Hamiltonian fashion, and T a subtorus of G. We prove that the
kernel of κ : H∗

G(M) → H∗(M//G) is generated by a small number
of classes α ∈ H∗

G(M) satisfying very explicit restriction properties.
Our main tool is the equivariant Kirwan map, a natural map from the
G-equivariant cohomology of M to the G/T -equivariant cohomology
of the symplectic reduction of M by T . We show this map is surjec-
tive. This is an equivariant version of the well-known result that the
(nonequivariant) Kirwan map κ : H∗

G(M) → H∗(M//G) is surjective.
We also compute the kernel of the equivariant Kirwan map, general-
izing the result due to Tolman and Weitsman [TW] in the case T = G
and allowing us to apply their methods inductively. This result is new
even in the case that dimT = 1. We close with a worked example:
the cohomology ring of the product of two CP 2s, quotiented by the
diagonal 2-torus action.

1 Introduction and Statement of Results

Let (M,ω) be a symplectic manifold with an action of a compact torus G.
A moment map is an invariant map

Φ : M −→ g∗

which intertwines the group action and the symplectic form by the moment
map condition

ω(·,Xξ) = d〈Φ, ξ〉 , (1)
where ξ ∈ g, Xξ is the vector field on M generated by ξ, and 〈 , 〉 is the
pairing of g∗ with g. We also write Φξ to indicate 〈Φ, ξ〉, the ξ-component
of Φ. Condition (1) and the nondegeneracy of ω imply that singular points
of Φ occur when Xξ = 0, or when a subtorus of G acts trivially. If C ⊂ M
is a component of the fixed point set of G on M , then Φ(C) has constant
value in g∗.
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For M a compact manifold, the image of Φ is a convex polytope in
g∗ [GuS]. Let d = dim G. For any subtorus T ⊂ G, denote by MT the
fixed point set of M under T . We say T is generic if MT = MG. The
terminology is appropriate as there are a finite number of subtori T such
that MT contains but does not equal MG. If T is generic, Φ(MT ) is a set of
isolated points. In general, however, the images Φ(MT ) form codimension-
k walls of the polytope, where d−k is the dimension of the subtorus of G/T
acting effectively. These walls may be internal to the polytope. Let S1 ⊂ G
be a 1-dimensional subtorus. If a component of MS1 has an effective G/S1

action, then its image will be a codimension-1 wall. These include but are
not restricted to the facets of the polytope.

When µ is a regular value of Φ, Φ−1(µ) is a submanifold of M and
has a locally free G action by the invariance of Φ. The quotient space
Φ−1(µ)/G is called the symplectic reduction and is denoted M//G(µ), where
the parameter µ is suppressed when µ = 0.

This paper is concerned with the ordinary, rational cohomology of sym-
plectic reductions and its relationship to the G-equivariant cohomology
of M . By definition, the G-equivariant cohomology of M is

H∗
G(M) := H∗(M ×G EG)

where EG is a contractible space with a free G action and M ×G EG
indicates the product M × EG quotiented by the diagonal G action. For
more details, see [AB2].

When G acts locally freely on a manifold Z, the G-equivariant cohomol-
ogy of Z is the ordinary cohomology of the quotient Z/G. In particular for
µ a regular value of the moment map,

H∗
G

(
Φ−1(µ)

)
= H∗(M//G(µ)

)
.

Theorem 1.1 (Kirwan). Let M be a compact symplectic manifold with
a Hamiltonian G action, where G is a compact torus. Let Φ be a moment
map for the G action on M . For any regular value µ ∈ g∗, the natural map

κ : H∗
G(M) −→ H∗(M//G(µ)

)

induced from the inclusion Φ−1(µ) ⊂ M is a surjection.

We generalize this theorem to the following equivariant version.

Theorem 1.2. Let M be a compact symplectic manifold with a Hamilto-
nian G action, where G is a compact torus and T a subtorus, not necessarily
generic. Let ΦG and ΦT be moment maps for the respective actions. For a
regular value µ ∈ t∗ of ΦT , the inclusion of the submanifold Φ−1

T (µ) of M
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induces a surjection in equivariant cohomology

κT : H∗
G(M) −→ H∗

G/T

(
M//T (µ)

)
.

Note that we use κ to indicate the map on cohomology induced by the
restriction from M to Φ−1

G (0), and κT for the map on cohomology induced
by the restriction from M to Φ−1

T (0) ⊇ Φ−1
G (0).

These two theoreoms allow one to compute the cohomology of the sym-
plectic reduction by a torus action, as long as one can compute the equivari-
ant cohomology and the kernel of this map. In certain cases, the equivariant
cohomology has been completely described [GoKM], [GH]. The kernel of
the Kirwan map in Theorem 1.1 has also been described in very general
terms, which we present below as Theorem 1.4. These results hinge on
the key fact that for compact Hamiltonian torus spaces, the equivariant
cohomology injects into the equivariant cohomology of the fixed point set
under the natural restriction map [K].

Theorem 1.3 (Kirwan). Let M be a compact Hamiltonian G space for G
a compact torus. Let C be the collection of connected components of the
fixed point set MG. Then

H∗
G(M) ↪→ H∗

G(MG) =
⊕

C∈C
H∗

G(pt) ⊗ H∗(C) (2)

is an injection. For a class α ∈ H∗
G(M) and C ∈ C, we write α|C to indicate

the restriction to the fixed component C.

The relationship between surjectivity onto the symplectic reduction and
injectivity of the equivariant cohomology into that of the fixed point set is
manifest in the following description of kerκ from Theorem 1.1.

Theorem 1.4 (Tolman-Weitsman). Let M be a compact Hamiltonian
G-space, with moment map Φ. Let µ ∈ g∗ be a regular value of Φ. The
kernel of the Kirwan map

κ : H∗
G(M) −→ H∗(M//G(µ)

)

is the ideal 〈KG(µ)〉 in H∗
G(M) generated by KG(µ) =

⋃
ξ∈ Kξ

G(µ) where

Kξ
G(µ) :=

{
α ∈ H∗

G(M)|α|C = 0 for all connected components C of MG

with 〈ΦG(C), ξ〉 > 〈µ, ξ〉
}

.

We prove an equivariant analogue of this theorem:

Theorem 1.5. Let M be a compact Hamiltonian G space with moment
map ΦG. Let T be any subtorus of G and ΦT the corresponding moment
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map for the T action. For µ be a regular value of ΦT , the kernel of the
equivariant Kirwan map

κT : H∗
G(M) −→ H∗

G/T

(
M//T (µ)

)

is the ideal 〈KG(µ)〉 generated by KG(µ) =
⋃

ξ∈ Kξ
G(µ) where Kξ

G(µ) is
defined as in Theorem 1.4.

The subindex G on KG(µ) and KG(µ) indicates that these generate
ideals in H∗

G(M), while the superindices indicate the relevant set of vectors
in the theorems. We will use 〈KG(µ)〉 to indicate the ideal in H∗

G(M)
generated by KG(µ) and we will suppress the parameter µ when µ = 0.
Notice that the difference between the kernel of κ and that of κT is that
the union in Theorem 1.5 is taken only over ξ ∈ t. The significance is that
Theorem 1.4 can be recovered by the successive application of Theorem 1.5
to one-dimensional subtori of G. In the case that µ = 0, for each S1 ⊂ G,
the kernel is generated by Kξ

S1 and K−ξ
S1 for a choice of generator ξ ∈ s1. It

follows that the kernel of κ is generated by classes α ∈ H∗
G(M) satisfying

one of d conditions, where d = dim G.
The final contribution of this article is to find a small set Ξ of ξ ∈ g such

that KG(µ) in Theorem 1.4 can be replaced by KΞ
G(µ) :=

⋃
ξ∈Ξ Kξ

G(µ). Let
Ξ ⊂ g be the (finite) set of unit vectors perpendicular to codimension-1
walls of the moment polytope. For any ξ ∈ Ξ, the annihilator ξ⊥ is a
hyperplane in g∗ through 0 and parallel to a codimension-1 wall of the
moment polytope. These hyperplanes, shifted to pass through µ, are the
key to the kernel of κ.
Theorem 1.6. The kernel of κ : H∗

G(M) → H∗(M//G(µ)) is generated by
classes α ∈ H∗

G(M) with the following property. There exists an oriented
hyperplane Hα

µ through µ and parallel to a codimension-1 wall of the mo-
ment polytope such that α restricts to 0 on the set of all fixed points whose
image under Φ lie to the positive side of Hα

µ .

We prove this theorem in section 5.

2 Equivariant Morse Theory

First we state several basic facts about equivariant Morse theory (as devel-
oped in [AB1]). We then refine these ideas to gain equivariant homotopy
information that is standard in the case that the Morse function has only
isolated critical points and there is no group action.

Let f be a smooth function on a compact manifold M and C a connected
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component of the critical set of f on M . Choose a Riemannian metric
on M . We say C is a non-degenerate critical manifold for f if

1. C ⊂ M is a submanifold of M such that df = 0 along C, and
2. The Hessian HCf (the matrix of second derivatives of f) is non-

degenerate on the normal bundle νC of C in M .

If every connected component of the critical set is non-degenerate, we say
f is Morse–Bott. At every non-degenerate critical submanifold, we use the
Riemannian metric to identify a neighborhood of the zero-section in the
normal bundle νC with a tubular neighborhood of C in M . The Hessian
defines a splitting νC = ν+C ⊕ ν−C into positive and negative normal
bundles. The dimension of the fibres of ν−C is called the Morse index of
C and is denoted λC .

Now assume that M has a G action, where G is a compact torus, and
that the metric and the function f are invariant with respect to this action.
The splitting of νC into positive and negative bundles is equivariant. This
setting mimics that in which f is a generic component of the moment map,
and C is a connected component of MG.

The proofs of the following two lemma are close to identical to those
presented by Milnor [M] in the case that critical manifolds are points and
there is no group action. We note only the minor differences in this more
general setting. To make the lemmas true for Morse–Bott functions, all
local calculations must include extra coordinates along the critical mani-
folds. To make the lemmas equivariant, we choose an invariant Riemannian
metric (so that the group acts by isometries) and we equivariantly identify
a neighborhood of the zero-section in the normal bundle of a critical sub-
manifold with a tubular neighborhood of that submanifold (see [Au]). This
makes all relevant maps and homotopies equivariant. For Lemmas 2.1 and
2.2, assume M is a compact manifold with a G action and a G-invariant
Riemannian metric, where G is a compact torus. Let f : M → R be an
invariant Morse–Bott function. Let Ma = f−1(−∞, a] for a ∈ R.

Lemma 2.1. Suppose a < b and f−1[a, b] is compact and contains no
critical points of f . Then

Ma ,G M b

is a G-equivariant homotopy equivalence.

Lemma 2.2. Suppose there are m connected components C1, . . . , Cm of
the critical set of f with the same critical value, and such that f(C1) =
· · · = f(Cm) ∈ (a, b). Then M b is equivariantly homotopic to Ma with a
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λi-cell bundle over Ci attached for each i = 1, . . . ,m, where λi is the Morse
index of Ci.

These homotopy theorems lead the following results about equivariant
cohomology. For the sake of simplicity, we assume that f has distinct values
for distinct connected components of the critical set. We note that the
theorems proven below can be generalized (using Lemma 2.2) to include the
case that f does not have distinct values for distinct critical sets, however
the notation becomes cumbersome.

Assume now that the G action is Hamiltonian, and that f is a com-
ponent of the moment map for the G action. As mentioned, we assume
also that f separates the critical sets, i.e. one can order the critical sets
C0, C1, . . . , Ck of f so that f(Ci) < f(Cj) if and only if i < j. If f is
generic, these critical sets are the fixed points of the G action.

The fundamental principle introduced by Atiyah and Bott [AB1] is that
Theorem 2.1. An equivariant cohomology class on C0 extends to a class
on Ma for any a ∈ R; in particular, it extends to one on all of M (although
not uniquely).

We prove this theorem following [AB1] and [TW].
Proof. Define the sets

M+
i := f−1

(
−∞, f(Ci) + εi

)
and (3)

M−
i := f−1

(
−∞, f(Ci) − εi

)
(4)

where εi > 0 is small enough that Ci is the only critical set in f−1(f(Ci)−εi,
f(Ci) + εi). Note that by Lemma 2.1

M+
i ,G M−

i+1. (5)

For each i, there is a long exact sequence in G-equivariant cohomology

· · · → H∗
G(M+

i ,M−
i ) → H∗

G(M+
i ) → H∗

G(M−
i ) → H∗+1

G (M+
i ,M−

i ) → · · · .
(6)

As before, we equivariantly identify a tubular neighborhood of Ci with a
neighborhood of 0 in the normal bundle of Ci. This bundle splits νCi =
ν+Ci ⊕ ν−Ci into the positive and negative normal bundles of Ci. By
excision and homotopy equivalence,

H∗
G(M+

i ,M−
i ) ∼= H∗

G(Di, Si)

where Di and Si are the unit disk and sphere bundles, respectively, of ν−Ci.
The equivariant Thom isomorphism states that

H∗
G(Di, Si) ∼= H∗−λi

G (Ci)
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where λi = dim(ν−Ci). Thus the exact sequence (6) is equivalently
· · · → H∗−λi

G (Ci) → H∗
G(M+

i ) → H∗
G(M−

i ) → H∗+1−λi
G (Ci) → · · · . (7)

Lemma 2.3. For i = 1, . . . , k, the sequence (7) splits into the short exact
sequence

0 → H∗−λi
G (Ci) → H∗

G(M+
i ) → H∗

G(M−
i ) → 0 . (8)

Proof of Lemma 2.3. The composition H∗−λi
G (Ci) → H∗

G(M+
i ) → H∗

G(Ci),
where the second map is induced by inclusion, restricts to the composition
H∗−λi

G (Ci) ∼= H∗
G(Di, Si) → H∗

G(Di) ∼= H∗
G(Ci). This latter composition is

muliplication by the equivariant Euler class of the negative normal bundle
of Ci. Atiyah and Bott show in [AB1] that, in the case that there is an
S1 ⊂ G which is acting on ν−Ci and fixing Ci, this class is not a zero-divisor.
It follows that H∗−λi

G (Ci) → H∗
G(M+

i ) must be an injection. Furthermore,
by the exactness of sequence (7), the image of H∗

G(M−
i ) → H∗+1−λi

G (Ci) is
the kernel of H∗+1−λi

G (Ci) → H∗+1
G (M+

i ), which is 0 by injectivity. Thus
there is a surjection H∗

G(M+
i ) → H∗

G(M−
i ), showing that the sequence

splits. !

An equivariant cohomology class on C0 extends to one on M+
0 . By

the homotopy equivalence (5), a class on M+
i extends to one on M−

i+1.
Surjectivity in (8) implies that a class on M−

i+1 extends to one on M+
i+1.

Thus by induction a class on C0 extends to a class in H∗
G(M). !

One may ask the question of how unique these extensions are. By the
injection (2), a class is distinguished by its restriction to the fixed point set.
As these fixed point sets are critical sets for Morse–Bott functions obtained
from components of the moment map, we exploit relationships among the
critical sets.

Let grad f be the gradient of f with respect to a compatible Riemannian
metric. For any critical subset C, there is a cell-bundle of points x ∈ M
which converge to C under the flow of −grad f (or grad f), called the
stable manifold (or unstable manifold) of C. Furthermore, every point in
M converges to some C under this flow. Thus, for any x ∈ M , there is a
(nonunique) sequence of critical sets Ci1 , Ci2 , . . . , Cim such that x converges
to Ci1 , and there are points in the unstable manifold of Cij which converge
to Cij+1 for every j ≥ 1. Define the extended stable manifold of a critical
set C to be the set of points x ∈ M whose flows along −grad f have an
associated sequence including C. In the case that M is a coadjoint orbit of
a semi-simple Lie group, the extended stable manifold of a critical point p is
just the closure of the stable manifold out of p; they are called (permuted)
Schubert varieties.



574 R.F. GOLDIN GAFA

Lemma 2.4. Suppose α ∈ H∗
G(M) restricts to 0 on all Ci such that i < j.

Then α|Cj is some multiple of e(ν−(Cj)), the equivariant Euler class of the
negative normal bundle of Cj .

Proof. By (8), a class α such that α|M−
j

= 0 is in the image of H
∗−λj

G (Cj) →

H∗
G(M+

j ). As the map H
∗−λj

G (Cj) → H∗
G(M+

j ) → H∗
G(Cj) (where the latter

map is the restriction to the critical set) is multiplication by e(ν−Cj), α|Cj

must be a multiple of this class. !

Lemma 2.5. For every connected component C of the critical set of f ,
there is a class α with the following restriction properties:

1. α|Ci = 0 if Ci is not in the equivariant extended stable manifold of
C, and

2. α|C = e(ν−C) where e(ν−C) is the equivariant Euler class of the
negative normal bundle (defined by f) of C.

Proof. Let j be the index such that Cj = C. Note that C0, . . . , Cj−1 are
not in the extended stable manifold of Cj, as i < j implies f(Ci) < f(Cj).
Using the short exact sequence (8) we extend the class 0 on C0 to α on
M−

j such that α restricts to 0 on C1, . . . , Cj−1. As 1 ∈ H
∗−λj

G (Cj) and
the composition H

∗−λj

G (Cj) → H∗
G(M+

j ) → H∗
G(Cj) is multiplication by

e(ν−Cj), we may extend α to M+
j such that its restriction to Cj is e(ν−Cj).

Now suppose i > j but Ci is not in the extended stable manifold
from Cj. Since points in the unstable manifold of Ci flow into points in M−

j ,
by Lemma 2.2 there is a CW-complex K which is G-homotopic to M−

j with
a λCi-cell bundle over Ci attached. K has critical sets C1, . . . , Cj−1, Ci. By
Lemma 2.4 α|K further restricts to mie(ν−Ci) on Ci where mi ∈ H∗

G(Ci).
Let βi ∈ H∗

G(M) be such that βi|Cl = 0, l < i and βi|Ci = mie(ν−Ci). βi

exists by the first part of this proof, and α− βi ∈ H∗
G(M) restricts to 0 on

C1, . . . , Cj−1, Ci and to e(ν−Cj) on Cj. Let

γ = α−
∑
βi

where the sum is over all i > j such that Ci is not in the extended stable
manifold of Cj. Then γ has the desired restriction properties. !

Instead of dealing with CW-complexes, one might consider the closures
of the stable manifolds and make the same argument as that above with
these varieties. However, the singularities require resolving to be sure there
are well-defined classes, restricting one to the complex case only.
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3 The Equivariant Kirwan Map

In this section we use equivariant Morse theory to prove Theorem 1.2, that
the equivariant Kirwan map is surjective. This proof follows very closely
Tolman and Weitsman’s rendition of Kirwan’s result (Theorem 1.1) in the
case where G = S1. The main elements of this proof are found in [TW],
modified to allow for a torus action commuting with the S1 action and for
the possibility of non-generic T ⊂ G.
Proof of Theorem 1.2. Choose S1 ⊂ G and let

ΦS1 : M → (s1)∗

be a moment map for the S1 action. We first show that the restriction
H∗

G(M) → H∗
G(Φ−1

S1 (0)) is surjective.
Let ξ ∈ g generate the S1 action. Consider the function (Φξ)2 where

Φξ := 〈Φ, ξ〉 : M → R .

For an appropriate choice of norm on (s1)∗, we have ||ΦS1 ||2 = (Φξ)2. The
critical set of (Φξ)2 consists of the minimum Φ−1

S1 (0) and the critical sets
of Φξ. By the moment map condition (1), the critical points of Φξ are the
fixed points of the S1 action generated by ξ. As Kirwan notes in [K], the
function (Φξ)2 may not be Morse–Bott function; there may be degenerate
critical sets. However, this occurs only at the minimum (Φξ)−1(0) where
the short exact sequence (8) holds trivially.

As before, without loss of generality we may suppose that f = (Φξ)2

separates the critical set. We order them by f(Ci) < f(Cj) if and only
if i < j and C0 = Φ−1

S1 (0). Let M+
i and M−

i be as in (3),(4). We use
Lemma 2.3 to show that H∗

G(M+
i ) → H∗

G(Φ−1
S1 (0)) is surjective for each i.

We noted that H∗
G(M+

0 ) → H∗
G(C0) is an isomorphism. Now assume

that we have a surjection H∗
G(M+

i ) → H∗
G(C0) for all i ≤ k − 1. By the

short exact sequence (8), there is a surjection H∗
G(M+

k ) → H∗
G(M−

k ). But
H∗

G(M−
k ) ∼= H∗

G(M+
k−1) by the homotopy equivalence (5) and the latter

ring surjects onto H∗
G(C0) by assumption. Thus H∗

G(M+
k ) → H∗

G(C0) is a
surjection. By induction there is a surjection H∗

G(M) → H∗
G(Φ−1

S1 (0)). As
0 is a regular value of ΦS1, H∗

G(Φ−1
S1 (0)) ∼= H∗

G/S1(M//S1) and thus

H∗
G(M) → H∗

G/S1(M//S1) (9)
is a surjection.

There is a residual Hamiltonian G/S1 action on M//S1, which allows
us to apply this technique inductively. By reduction in stages, for any
commuting subgroups H1 and H2 of G, (M//H1)//H2 = M//(H1 × H2).
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For any T ⊂ G, choose a splitting T = S1 × · · · × S1. Successively apply
the surjection (9) to obtain a sequence of surjections

H∗
G(M) → H∗

G/S1(M//S1) → H∗
G/(S1×S1)

(
M//(S1 × S1)

)
→ · · ·

→ H∗
G/T (M//T ) .

4 The Kernel of the Equivariant Kirwan Map

Here we prove Theorem 1.5, that kerκT = KG(µ), where κT : H∗
G(M) →

H∗
G/T (M//T (µ)) is the equivariant Kirwan map. We first show that

KG(µ) ⊂ ker κT by directly restricting classes in KG(µ) to Φ−1
T (µ). We

then show the ideals are equal by a dimension count.
Proof of Theorem 1.5. Let i : t ↪→ g be the inclusion map of Lie algebras
and π : g∗ → t∗ the induced projection. Denote by 〈 , 〉G and 〈 , 〉T the
natural pairings between g∗ and g and between t∗ and t, respectively. Then
if ΦG : M → g∗ is a moment map for the G action, ΦT = π ◦ ΦG is a
moment map for the restricted T action. Choose µ ∈ t∗ a regular value
of ΦT . Let α ∈ Kξ

G for some ξ ∈ t. By definition α|C = 0 for every
connected component C of MG such that Φi(ξ)

G (C) > 〈µ, ξ〉T . Let

M+
ξ (µ) =

{
m ∈ M

∣∣ Φi(ξ)
G (m) > 〈µ, ξ〉T

}
.

M+
ξ (µ) is a maximal dimension open G-invariant submanifold of M . Thus

the restriction of the injection H∗
G(M) → H∗

T (MG) to M+
ξ (µ) is an injection

into the cohomology of those components C of MG which lie in M+
ξ (µ).

Thus α|C = 0 for all C ⊂ M+
ξ (µ)G implies α|M+

ξ (µ) = 0. In particular

α|{m∈M | 〈ΦG(m),i(ξ)〉G=〈µ,ξ〉T } = 0 . (10)
But

〈
ΦG(m), i(ξ)

〉
G

=
〈
π ◦ΦG(m), ξ

〉
T

= 〈ΦT (m), ξ〉T .

Therefore,
{
m ∈ M

∣∣〈ΦG(m), i(ξ)〉G = 〈µ, ξ〉T
}

=
{
m ∈ M

∣∣ 〈ΦT (m), ξ〉T = 〈µ, ξ〉T
}

⊇ Φ−1
T (µ) .

Thus α|Φ−1
T (µ) = 0, or equivalently α ∈ ker κT . It follows that any class in

the ideal generated by KG = ∪ξ∈ Kξ
G lies in ker κT .
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To show that the inclusion 〈KG〉 ⊆ ker κT is an equality, we prove that

dim〈KG〉 = dim kerκT = dim
(
H∗

G/T (pt) ⊗ 〈KT 〉
)

(11)

as graded ideals. We prove this in the case µ = 0, as the more general case
is identical but notationally more cumbersome.

As M is a Hamiltonian G-space and M//T is a Hamiltonian G/T -space,
they are both equivariantly formal with respect to their group actions.
This implies that as graded vector spaces H∗

G(M) = H∗
G/T (pt) ⊗ H∗

T (M)
and H∗

G/T (M//T ) = H∗
G/T (pt) ⊗ H∗(M//T ). Recall that κT : H∗

G(M) →
H∗

G/T (M//T ) and κ : H∗
T (M) → H∗(M//T ) are surjective (Theorems 1.2

and 1.1). Thus there is a graded equality

dim kerκT = dim H∗
G(M) − dimH∗

G/T (M//T )

= dim
(
H∗

G/T (pt) ⊗ H∗
T (M)

)
− dim

(
H∗

G/T (pt) ⊗ H∗(M//T )
)

= dim
(
H∗

G/T (pt) ⊗ ker(κ : H∗
T (M) → H∗(M//T ))

)

= dim
(
H∗

G/T (pt) ⊗ 〈KT 〉
)
.

where the last equality follows from Theorem 1.4.
We now show that 〈KG〉 has the same dimension. In degree k for ξ ∈ t,

dim〈Kξ
G〉

k = dim〈{α ∈ Hk
G(M)| α|Ci = 0 ∀i < j,

for any j such that Φξ
G(Cj) > 0}〉

where i < j if and only if Φξ
G(Ci) < Φξ

G(Cj). Let F : H∗
G(M) → H∗

T (M)
be the surjective map which forgets the G/T action. Because MT = MG

for generic T , if α ∈ Hk
G(M) has the property that α|Ci = 0 ∀i < j, then

F (α) ∈ Hk
T (M) has the property that F (α)|Ci = 0 ∀i < j. Furthermore,

for ξ ∈ t, Φξ
T = Φξ

G so that such classes are precisely those in 〈Kξ
T 〉. As

ker F = H∗
G/T (pt) in all but degree 0, we conclude that

dim
〈
{α ∈ Hk

G(M)
∣∣ α|Ci = 0 ∀i < j, for any j such that Φξ

G(Cj) > 0}
〉

= dim
〈{
β ∈

∑

l+m=k

H l
G/T (pt) ⊗ Hm

T (M)
∣∣∣ β|Ci = 0 ∀i < j ,

for any j such that Φξ
G(Cj) > 0

}〉

= dimk
(
H∗

G/T (pt) ⊗ 〈Kξ
T 〉

)
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5 The Walls of the Moment Polytope

In this section, we prove an important refinement of Theorem 1.5. It states
that the collection of 〈Kξ

G(µ)〉 for a small number of ξ ∈ g are sufficient to
generate the kernel of the map H∗

G(M) → H∗(M//G(µ)). In particular, one
can consider only such ξ which are perpendicular to codimension-1 walls of
the moment polytope.

We illustrate the main theorem of this section with an example. Let M
be a generic 6-dimensional coadjoint orbit of SU(3). The maximal torus
G = T 2 of SU(3) acts on this orbit in a Hamiltonian fashion. The image of
the moment map is a hexagon, and the codimesion-1 walls of the moment
polytope are shown in Figure 1(a).

µ

(a)

u -u1 2

u -u1 2

u -u3 2
u -u3 2

µ

(b)

H

0

0

µ

(d)

u -u1 2

u -u1 2

u -u1 3u -u1 3

0

0u -u3 2

u -u3 2u -u3 1

u -u3 1

µ

(c)

0 0

Figure 1: (a) The image of a generic SU(3) coadjoint orbit under the
moment map; (b) A class α that is 0 to one side of a codimension-1 hyper-
plane through µ; (c)-(d) Two classes which restrict to 0 on one side of a
hyperplane parallel to a wall of the moment polytope. Their sum is α.

Consider the reduction at the point µ indicated. According to Theo-
rem 1.4, a generating set for the kernel of the map H∗

G(M) → H∗(M//G(µ))
would include classes which restrict to 0 on fixed points whose images under
the moment map (indicated by vertices) lie to one side of any hyperplane
through µ. In particular, the class α whose restrictions to the fixed points
is indicated by Figure 1(b) would be a generator of the kernel because it
is 0 to one side of the hyperplane H. Theorem 5.1 states that such a class
is redundant; it will in fact be generated by classes which are 0 to one side
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of a hyperplane through µ parallel to a wall of the moment polytope. In
Figures 1(c) and 1(d) we see two classes which are in the kernel according
to Theorem 5.1 and whose sum is α.

More generally, let C be a connected fixed point component of the G-
action on M , and ξ ∈ g generic so that C is a critical manifold for Φξ. Let
Xξ be the extended stable manifold of C under Φξ. The image Φ(Xξ) of
Xξ under the moment map is not a priori convex. Suppose dimΦ(Xξ) =
dim g∗ = d. Consider the collection of codimension-1 walls of Φ(M) that lie
in Φ(Xξ). These are the images of S1-fixed point sets in Xξ. At least one
of these walls, translated to pass through C, has the property that Φ(Xξ)
lies entirely to one side. If Φ(Xξ) is not maximal dimension, then every
codimension-1 wall containing Φ(Xξ) has this property.

We are now ready to state and prove in what sense the walls of the
moment polytope are sufficient information for calculating the kernel of κ.

Theorem 5.1. Let Ξ⊥
µ consist of hyperplanes through µ and parallel

to codimension-1 walls of the moment polytope. Let K ⊂ H∗
G(M) be the

ideal generated by classes α ∈ H∗
G(M) which restrict to 0 on all connected

components C of MG whose images under Φ lie to one side of some H ∈ Ξ⊥
µ .

Then K = ker κ, where κ : H∗
G(M) → H∗(M//G(µ)) is the Kirwan map.

Proof. Choose any α ∈ H∗
G(M) where α|Φ−1(µ) = 0. By Theorem 1.4,

α ∈
∑

ξ∈ Kξ
G(µ). We want to show that α can be written as a linear

combination of elements in Kη
G(µ) where η ∈ Ξ are the annihilators of the

hyperplanes through 0 and parallel to codimension-1 walls of the moment
polytope.

Without loss of generality, assume α ∈ Kξ
G(µ) for some ξ, where Kξ

G(µ)
are classes restricting to 0 on fixed points whose image under Φ lies to
one side of ξ⊥ + µ. Order the connected components of the critical sets
C1, . . . , Cl so that i < j if and only if Φξ(Ci) < Φξ(Cj). We prove that
α can be expressed as a sum of elements in Kη

G(µ), η ∈ Ξ, by induction
on the index of the critical sets. Let Ci1 be the first critical set such that
α|Ci1

4= 0. Then α|Ci1
is some multiple mi1 of e(ν−

ΦξCi1). Let Xξ
1 be the

extended stable manifold of Ci1 and let αi1 be any class satisfying the prop-
erties of Lemma 2.5. In particular, αi1 ∈ K

ηi1
G (µ) ∪ K

−ηi1
G (µ) where ηi1 is

perpendicular to a codimension-1 wall H of Φ(M) such that Φ(Xξ
1 ) lies to

one side of H shifted to pass through µ. Then α−mi1αi1 is a class which re-
stricts to 0 on C1, . . . , Ci1 . Now suppose that α−

∑l
k=1 αik restricts to 0 on

C1, . . . , Cil . Let Cil+1 be the first critical set on which this class is non-zero.
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Use Lemma 2.5 to find a class αil+1 supported on Xξ
l+1. Then α−

∑l+1
k=1 αik

is 0 on C1, . . . , Cil+1. In this manner, we express α =
∑

i αi, where each
αi ∈ Kη

G(µ) for some choice of η perpendicular to a codimension-1 wall of
the polytope. !

6 Application to the Product of Symplectic Manifolds

Let M = X1 × · · · × Xk be the product of symplectic manifolds Xi, each
with a Hamiltonian T action. Theorem 5.1 allows us to say a lot about the
reduction of M by the diagonal torus action. We note that the diagonal
torus T∆ is a subtorus of the product G = T × · · · × T acting on M . If
the torus is just one-dimensional, Theorem 5.1 is not more useful than the
original formulation of Theorem 1.4. It is when dimT ≥ 2 that one can
significantly reduce the number of vectors needed to generate the kernel of
κ : H∗

T∆
(M) → H∗(M//T∆). We calculate the cohomology of the reduced

space for a product of two copies of CP 2s, where we have quotiented by
the diagonal T 2

∆ action.
Let X1 = X2 = CP 2 and T act on Xi by (θ1, θ2) · [z0 : z1 : z2] =

[z0 : eiθ1z1 : eiθ2z2]. By the moment map condition (1), if we choose the
symplectic forms ω on X1 and kω, k ∈ R on X2, the image for the moment
map for the T action on X2 is that for the action of T on X1 dilated by
k. The image of the moment map for the diagonal T action on X1 × X2

is the sum of the moment maps for each component. Choose k > 2 and
let Φ : X1 × X2 → t∗∆ be a moment map for the diagonal action. Then
Φ(X1 × X2) with its walls is pictured in Figure 2.

µ

(S, N)

(N, S)

(N, N)

(S, S)
(S, E)(E, S) (E, E)

(N, E)

(E, N)

Figure 2: The image of the moment map for T 2
∆ acting on CP 2 × CP 2.

The image of fixed points are labeled and indicated by vertex dots,
and the image of fixed point sets of codimension-1 tori are indicated by
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line segments, which in this case form codimension-1 walls of the mo-
ment polytope. We find the cohomology of the symplectic reduction
(X1 × X2)//T∆(µ) where µ is the point indicated in the figure by finding the
kernel of κ : H∗

T∆
(X1 × X2) → H∗((X1 × X2)//T∆(µ)) using Theorem 5.1.

We note that there are three distinct hyperplanes through µ parallel to walls
of the moment polytope: horizontal, vertical, and diagonal with slope -1.

Consider first H∗
T∆

(X1 × X2). By the equivariant Künneth theorem,
H∗

T∆
(X1 × X2) = H∗

T (X1) ⊗H∗
T (pt) H∗

T (X2) , (12)

where T∆ ⊂ G = T × T is the diagonal torus. H∗
T (CP 2) is generated

in degree 2, by characteristic classes inherited from the module structure
H2

T (pt) → H2
T (CP 2), and the equivaraint symplectic form on CP 2. We use

the chosen basis for t∗ ∼= H2
T (pt) and denote the characteristic classes by

u1 and u2. These classes restrict to themselves on each fixed point of T
on CP 2. Let x be (the multiple of) the equivariant symplectic class given
by the restrictions indicated in Figure 3.

1

2

-u

-u

0

Figure 3: The restriction of the class x to the fixed point set of T acting
on CP 2.

Similarly, u1 and u2 are degree 2 equivariant classes on CP 2×CP 2 which
restrict to themselves at every fixed point of the T∆ action on the product.
By (12) the classes u1, u2, x⊗1 and 1⊗x generate H∗

T∆
(CP 2 ×CP 2). Here

ui = ui ⊗ 1 = 1 ⊗ ui.
Note that a fixed point of CP 2×CP 2 is a pair (p, q) ∈ ((CP 2)T , (CP 2)T ).

The restriction of a class on the product space to a fixed point is
(a ⊗ b)|(p,q) = a|p ⊗ b|q (13)

where a, b ∈ H∗
T (CP 2). The algebraic structure of these classes is inherited

by multiplication on each fixed point.
The Betti numbers for H∗

T∆
(CP 2 × CP 2) are easy to compute. As

graded vector spaces, H∗
T∆

(CP 2 × CP 2) = H∗
T (pt) ⊗ H∗(CP 2 × CP 2).

It follows that the equivariant Poincaré polynomial for CP 2 × CP 2 is
(1 + t2 + t4 + . . . )2(1 + t2 + t4)2 = 1 + 4t2 + 10t4 + . . . . We noted above
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that u1, u2, 1⊗ x, and x ⊗ 1 are four linearly independent degree 2 classes.
A choice of 10 linearly independent degree 4 classes is u2

1, u
2
2, u1u2, x ⊗ u1,

x⊗u2, u1⊗x, u2⊗x, x⊗x, 1⊗x2, and x2⊗1. The restrictions of these classes
to the fixed point set (CP 2 × CP 2)T∆ is determined by the formula (13).
As an example, we compute the restriction of x ⊗ x to the fixed point set.
See Figure 4.

u2
2

1u2

u1u2

u1u2

µ

H

0

0

0
0 0

Figure 4: The restriction of the class x ⊗ x to the fixed point set of the
diagonal T acting on CP 2 × CP 2. Notice that this class restricts to 0 on
fixed points whose image under Φ lie on one side of the indicated hyperplane
through µ.

We have left to find the kernel of κ : H∗
T∆

(CP 2 × CP 2) →
H∗((CP 2 × CP 2)//T∆(µ)). The reduced space (CP 2 × CP 2)//T∆(µ) has
(real) dimension

dim(CP 2 × CP 2) − 2 dim T∆ = 8 − 4 = 4 .

Thus we expect all classes of degree 6 or higher to be in the kernel of κ :
H∗

T∆
(CP 2 ×CP 2) → H∗((CP 2 ×CP 2)//T∆(µ)). In degree 2, we can easily

see that no linear combination of the four classes above will restrict to 0 on
one side of any of the three hyperplanes parallel to walls of the moment poly-
tope. By Theorem 5.1, there are no degree 2 classes in kerκ. In degree 4,
however, we expect nine (of ten) linearly independent classes to be in the
kernel, as the image of κ is (a multiple of) the volume form on the reduction.
The reader can verify using (13) that the following classes restrict to 0 on
one side of one of the three hyperplanes through µ parallel to a wall of the
moment polytope: x ⊗ x, u1u2+u1 ⊗ x, u2

1+u1 ⊗ x, u2
1−1 ⊗ x2, u2

2−1 ⊗ x2,
u2

2−u2⊗x, u1⊗x−x⊗u1 +u2⊗x−x⊗u2 +x2⊗1−1⊗x2, 1⊗x2 +u1⊗x,
and x⊗u2+x⊗u1+x2⊗1+u1u2. They are all linearly independent, which
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can be verified rather tediously. As an example, one can see in Figure 4
that x⊗ x restricts to 0 on one side of the diagonal hyperplane through µ.
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