Math 722: Final Exam (Counts as two problem sets

Due on Friday, May 11, 11:45am

1. p. $79 \# 8$.
2. p. $81 \# 21$.
3. Consider the sequence of inclusions $S^{2 k-1} \hookrightarrow S^{2 k+1}$ induced by the inclusion of $\mathbb{C}^{k} \hookrightarrow \mathbb{C}^{k+1}$ into the first k coordinates of \mathbb{C}^{k+1}. You should think of theses spheres as the set of points distance one from the origin in the appropriate vector space.

- Show that S^{1} acts on $S^{2 k+1}$ by rotating each complex coordinate by $e^{2 \pi i \theta}$. There are a few conditions that you need to check: that for each $\theta \in S^{1}$, this action produces a homeomorphism from $S^{2 k+1}$ to itself, that the identity acts by the identity homeomorphism, and that if $\theta, \rho \in S^{1}$, then the action by $\theta+\rho$ is the action of ρ followed by the action of θ.
- Show that this inclusion is equivariant with respect to the action of S^{1}. In other words, show the inclusion commutes with the action.
- Conclude that this induces and inclusion $\mathbb{C} P^{k-1} \rightarrow \mathbb{C} P^{k}$.
- What is the induced map on homology?

4. Prove the Generalized Jordan Curve Theorem, which says If $A \subset S^{n}$ and $A \simeq S^{k}$, then

$$
\tilde{H}_{\ell}\left(S^{n} \backslash A\right) \cong \begin{cases}\mathbb{Z} & \text { if } \ell=\mathrm{n}-\mathrm{k}-1 \\ 0 & \text { otherwise }\end{cases}
$$

5. Prove the Lefschetz fixed point theorem for Δ complexes. Let X be a finite Δ complex. Define the Lefschetz number of a map $f: X \rightarrow X$ by

$$
L(f)=\sum_{n}(-1)^{n} \operatorname{Tr}\left(f_{*}: H_{n}(X) \rightarrow H_{n}(X)\right)
$$

where the $\operatorname{Tr}\left(f_{*}: H_{n}(X) \rightarrow H_{n}(X)\right)$ is the trace of the TORSION FREE part (you can equivalently tensor $H_{n}(X)$ with \mathbb{Q} and let f_{*} be the map on that tensor product induced from the map on $H_{n}(X)$, or you can just quotient out by any part of $H_{n}(X)$ that has torsion.) In other words, f_{*} is a map from a vector space of rank k to itself, so it has a trace when you write it in a basis.
Theorem to prove: Suppose $f: X \rightarrow X$ has $L(f) \neq 0$. Then f has fixed points.
Hint: Use barycentric subdivision! Also, use your text.
6. \#2 p. 155
7. \#9 p. 156

