Math 722: Final Exam (Counts as two problem sets

Due on Friday, May 11, 11:45am

1. p. 79 #8.

- 2. p. 81 #21.
- 3. Consider the sequence of inclusions $S^{2k-1} \hookrightarrow S^{2k+1}$ induced by the inclusion of $\mathbb{C}^k \hookrightarrow \mathbb{C}^{k+1}$ into the first k coordinates of \mathbb{C}^{k+1} . You should think of theses spheres as the set of points distance one from the origin in the appropriate vector space.
 - Show that S¹ acts on S^{2k+1} by rotating each complex coordinate by e^{2πiθ}. There are a few conditions that you need to check: that for each θ ∈ S¹, this action produces a homeomorphism from S^{2k+1} to itself, that the identity acts by the identity homeomorphism, and that if θ, ρ ∈ S¹, then the action by θ + ρ is the action of ρ followed by the action of θ.
 - Show that this inclusion is equivariant with respect to the action of S^1 . In other words, show the inclusion commutes with the action.
 - Conclude that this induces and inclusion $\mathbb{C}P^{k-1} \to \mathbb{C}P^k$.
 - What is the induced map on homology?
- 4. Prove the *Generalized Jordan Curve Theorem*, which says If $A \subset S^n$ and $A \simeq S^k$, then

$$\tilde{H}_{\ell}(S^n \setminus A) \cong \begin{cases} \mathbb{Z} & \text{if } \ell = \text{n-k-1} \\ 0 & \text{otherwise} \end{cases}$$

5. Prove the *Lefschetz fixed point theorem for* Δ *complexes.* Let X be a finite Δ complex. Define the Lefschetz number of a map $f : X \to X$ by

$$L(f) = \sum_{n} (-1)^{n} Tr(f_* : H_n(X) \to H_n(X)),$$

where the $Tr(f_*: H_n(X) \to H_n(X))$ is the trace of the TORSION FREE part (you can equivalently tensor $H_n(X)$ with \mathbb{Q} and let f_* be the map on that tensor product induced from the map on $H_n(X)$, or you can just quotient out by any part of $H_n(X)$ that has torsion.) In other words, f_* is a map from a vector space of rank k to itself, so it has a trace when you write it in a basis.

Theorem to prove: Suppose $f: X \to X$ has $L(f) \neq 0$. Then f has fixed points.

Hint: Use barycentric subdivision! Also, use your text.

6. #2 p. 155

7. #9 p. 156