Differential Topology Solution Set #1

Select Solutions

1. Prove that $S^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\}$ is an n-dimensional manifold.

We make coordinate charts on Sⁿ that cover the whole space. Let $U^+ = \{(x_1, \ldots, x_{n+1}) \in S^n \text{ such that } x_{n+1} > 0\}$. We define the diffeomorphism:

$$\phi: \mathcal{U}^+ \longrightarrow V \subset \mathbb{R}^n$$

by $\phi((x_1, \ldots, x_{n+1})) = (x_1, \ldots, x_n)$. Notice that ϕ is a one-to-one because $x_{n+1} = 1 - \sqrt{\sum_{i=1}^{n} (x_i)^2}$ (and in particular is determined by x_1, \ldots, x_n . ϕ is clearly infinitely differentiable, and its inverse is also clearly infinitely differentiable by the same methods introduced in the book for the case n = 1. Similarly, we define a different chart for the Southern hemisphere, where we use the same map on the set $U^- = \{(x_1, \ldots, x_{n+1}) \in S^n \text{ such that } x_{n+1} < 0\}$.

We have now covered the sphere S^n with local charts except on the equator, a copy of S^{n-1} given by $\{(x_1, \ldots, x_n, 0) : \sum_i x_i^2 = 1\}$. Note that it would not be sufficient to use induction here, since we would not have shown that these points have neighborhoods in S^n that are locally diffeomorphic to \mathbb{R}^n .

Instead, we note that the first paragraph could have been done for any hemisphere. For any i, let

$$U_{i}^{+} = \{(x_{1}, \dots, x_{n+1}) \in S^{n} : x_{i} > 0\}, \text{ and } U_{i}^{-} = \{(x_{1}, \dots, x_{n+1}) \in S^{n} : x_{i} < 0\}$$

and

$$\varphi_i: U_i^+ \longrightarrow V \subset \mathbb{R}^n$$

be given by $\phi_i((x_1, \ldots, x_{n+1})) = (x_1, \ldots, \hat{x}_i, \ldots, x_{n+1})$, where \hat{x}_i indicates omitting x_i . Then ϕ_i is clearly smooth. It is one-to-one (and therefore invertible) because $\phi_i^{-1}(y_1, \ldots, y_n) = (y_1, \ldots, y_{i-1}, 1 - \sqrt{\sum_{j=1}^n (y_j)^2}, y_{i+1} \ldots, y_n)$, where the term in the middle occurs in the i^{th} position. It is clear that ϕ_i^{-1} is (infinitely) differentiable – to

check the ith term, one simply checks directly. So ϕ_i is a diffeomorphism. Similarly, $\phi_i : U_i^- \to V \subset \mathbb{R}^n$ defined the same way is a diffeomorphism. Clearly, any point on S^n is in U_i^+ or U_i^- for some i.

- 2. Section 1, #2
- 3. Section 1, #3
- Section 1, #5 Show that every k-dimensional vector subspace V of ℝ^N is a manifold diffeomorphic to ℝ^k, and that all linear maps on V are smooth.

Choose any basis $\{v_1, \ldots, v_k\}$ of V, where $v_i \in \mathbb{R}^N$. Since V is k-dimensional, there are exactly k vectors in this basis, and the v_i are linearly independent. Choose a basis $\{e_1, \ldots, e_k\}$ of \mathbb{R}^k . Let $\phi(v_i) := e_i$ for all i. Since $\{v_i\}$ are linearly independent, ϕ extends linearly to a map on all of V, and since the set $\{e_i\}$ is linearly independent, $\phi : V \to \mathbb{R}^k$ is surjective. It is clearly invertible for the same reasoning, where $\phi^{-1}(e_i) = v_i$, and $\phi^{-1} : \mathbb{R}^k \to V$ is the linear extension of the map on the basis elements. Now ϕ is one-to-one; the fact that it is smooth follows from the next exercise. Similarly, ϕ^{-1} is a linear map that is smooth by the next exercise. Thus ϕ is a diffeomorphism. The fact that all linear maps on V are smooth also follows from the next exercise.

5. Suppose that U is an open set in \mathbb{R}^n . Prove that if $L : U \to \mathbb{R}^m$ is a linear map, then $dL_x = L$ for all $x \in U$. *Hint*. Suppose $0 \in U$ and try to prove the statement first at x = 0.

Let L be a linear map. Then for any $h \in \mathbb{R}^n$,

$$dL_{x}(h) = \lim_{t \to 0} \frac{L(x+th) - L(x)}{t} = \lim_{t \to 0} \frac{L(x) + tL(h) - L(x)}{t} = \lim_{t \to 0} \frac{tL(h)}{t} = L(h)$$

It follows that $dL_x = L$ for any $x \in U$.

- 6. Section 2, #1
- 7. Section 2, #4
- 8. Section 2, #12 A *curve* in a manifold X is a smooth map $t \to c(t)$ of an interval of \mathbb{R}^1 into X. The *velocity vector* of the curve c at time t_o , denoted simply $\frac{dc}{dt}(t_0)$, is defined to be the vector $dc_{t_0}(1) \in T_{x_0}(X)$, where $x_0 = c(t_0)$ and $dc_{t_0} : \mathbb{R}^1 \to T_{x_0}(X)$. In the case that $X = \mathbb{R}^k$ and $c(t) = (c_1(t), \ldots, c_k(t))$ in coordinates, check that

$$\frac{\mathrm{d}c}{\mathrm{d}t}(t_0) = (c_1'(t_0), \cdots, c_k'(t_0)).$$

Prove that every vector in $T_x(X)$ is the velocity vector of some curve in X, and conversely.

The first step is straightforward: simply take the matrix $\left(\frac{dc_i}{dt}(t_0)\right)$ as is the definition of dc_{t_0} . Then we apply it to 1 by doing matrix multiplication:

$$\frac{\mathrm{d}c}{\mathrm{d}t}(t_0) = \mathrm{d}c_{t_0}(1) = \left(\frac{\mathrm{d}c_1}{\mathrm{d}t}(t_0), \dots, \frac{\mathrm{d}c_k}{\mathrm{d}t}(t_0)\right) \cdot 1 = \begin{pmatrix} \frac{\mathrm{d}c_1}{\mathrm{d}t}(t_0) \\ \vdots \\ \frac{\mathrm{d}c_k}{\mathrm{d}t}(t_0) \end{pmatrix}$$

where this last expression is then equal to $(c'_1(t_0), \dots, c'_k(t_0))$, as desired.

By construction, we have shown that the velocity vectors of curves in X that go through x are indeed elements of $T_x(X)$, which is the converse statement. To prove that every vector in $T_x(X)$ is a velocity vector of a curve, we have to solve the following differential equation (on a manifold — however, in this case the "manifold" is just \mathbb{R}^k !). Let $v \in T_x(X)$; we need to find a curve c(t) such that $c(t_0) = x$ and $dc_{t_0}(1) = v$. In coordinates, we may write $x = (x_1, \ldots, x_k)$ and $v = (v_1, \ldots, v_k)$. Then we solve individually for the differential equation in one variable: $c_i(t_0) = x_i$, and $c'_i(t_0) = v_i$. By existence of solutions to differential equations, there is a solution to this equation (and initial condition). Let $c_i(t)$ be the solution. Then c(t) = $(c_1(t), \ldots, c_k(t))$ is the curve that has has velocity vector v.

9. Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be the function

$$f(x,y) = (x^2 - y, x + y, 5).$$

Write out df in matrix form.

10. Prove that if $\phi : U \to V$ is a diffeomorphism of open sets in \mathbb{R}^n , then

$$(\mathrm{d}\varphi)^{-1} = \mathrm{d}(\varphi^{-1}).$$

Since ϕ is a diffeomorphism, it is invertible, and $\phi \circ \phi^{-1} = id$, the identity map. Then by the chain rule,

$$\mathbf{d}(\phi \circ \phi^{-1}) = \mathbf{d}\phi \circ \mathbf{d}(\phi^{-1}) = \mathbf{d}(\mathbf{i}\mathbf{d}) = \mathbf{i}\mathbf{d}.$$

Similarly, $d(\phi^{-1}) \circ d\phi = id$. On the other hand, by definition of inverses,

$$d\phi \circ (d\phi)^{-1} = (d\phi)^{-1} \circ d\phi = id.$$

The result follows by uniqueness of inverses.

Additional problems for graduate students, or undergraduate extra credit

11. Section 1, #10 "The" torus is the set of points in \mathbb{R}^3 at distance b from the circle of radius a in the xy plane, where 0 < b < a. Prove that these tori are all diffeomorphic to $S^1 \times S^1$.

To show that two spaces are diffeomorphic, one can give a (global) diffeomorphism. Let $T_{a,b}$ be the torus described; note that the circle of radius a in the xy plane is described by $C_a = \{(x, y, 0) \in \mathbb{R}^3 : x^2 + y^2 = a^2\}$ and $T_{a,b} = \{(x, y, z) : d((x, y, z), C_a) = b\}$ where d is the distance from any point (x, y, z) to the closest point on C_a . This "closest point" is obtained by dropping a perpendicular to the circle C_a . We begin by writing this in polar (NOT spherical) coordinates: let $C_a = \{(a, \theta, 0) : \theta \in [0, 2\pi)\}$. Then $T_{a,b} = \{(r, \theta, z) : (r - a)^2 + z^2 = b^2\}$. Meanwhile, we write $S^1 \times S^1$ in polar coordinates as well: $S^1 \times S^1 = \{(1, \eta_1, 1, \eta_2) : \eta_i \in [0, 2\pi)\} \subset \mathbb{R}^2 \oplus \mathbb{R}^2$.

$$\phi: \mathsf{T}_{a.b} \longrightarrow \mathsf{S}^1 \times \mathsf{S}^1$$

be given by the following map:

$$\phi((\mathbf{r},\theta,z)) = (1,\theta,1,\eta)$$

where η is the unique value in $[0, 2\pi)$ such that $b \cos(\eta) = r - a$ and $b \sin(\eta) = z$. (Note that I don't use the inverse trigonometric functions because they restrict their ranges in order to be well-defined functions). It is clear that the image of ϕ is indeed $S^1 \times S^1$, and that the map is one-to-one. The inverse map is

$$\Phi^{-1}(1,\eta_1,1,\eta_2) = (r,\eta_1,z)$$

where $r = b \cos(\eta_2) + a$ and $z = b \sin(\eta_2)$. It is clear that ϕ^{-1} is smooth, since cos and sin are smooth functions. To show that ϕ is smooth, one can take the derivative of ϕ at different points using the appropriate trigonometric function at the appropriate point. For example, z > 0, then use

$$\phi_{z>0}((\mathbf{r}, \theta, z)) = (1, \theta, 1, \arccos(\frac{\mathbf{r} - a}{b}))$$

is a diffeomorphism around these points. Under this (local) diffeomorphism, you always obtain that $\eta \in [0, \pi)$, so clearly $\phi_{z>0}$ is not a global diffeomorphism. However, this is the restriction of the global ϕ to the points where z > 0.

- 13. Section 2, #9(a-d)
- 14. Section 2, #10