MATH 351

Solutions \#6

1. Suppose

$$
f(x)= \begin{cases}c\left(1-x^{2}\right) & \text { if }-2 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Is there a value of c for which f is a probability density function? Why or why not?

Solution. This cannot be a probability density function. If $c=0$, then it does not integrate 1 . For any $c \neq 0$, there is an interval in $-2 \leq x \leq 2$ over which the integral is negative, and therefore does not represent a probability over this interval
2. Suppose that

$$
f(x)= \begin{cases}c\left(3 x-x^{2}\right) & \text { if } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

is the probability density function of the random variable X.
(a) Find c.

Solution. We integrate and set this equal to 1 . This gives us $c=3 / 10$.
(b) Find $P\{-1 \leq x \leq 1\}$.

Solution.

$$
\begin{aligned}
P\{-1 \leq x \leq 1\} & =\int_{-1}^{1} f(x) d x=\int_{-1}^{0} 0 d x+\int_{0}^{1} \frac{3}{10}\left(3 x-x^{2}\right) d x \\
& =\left.\frac{3}{10}\left(\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{1}=\frac{7}{20}
\end{aligned}
$$

(c) Find $E[X]$.

Solution.

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{2} x \frac{3}{10}\left(3 x-x^{2}\right) d x \\
& =\frac{3}{10} \int_{0}^{2}\left(3 x^{2}-x^{3}\right) d x=\frac{3}{10} x^{3}-\left.\frac{x^{4}}{4}\right|_{0} ^{2}=\frac{6}{5}
\end{aligned}
$$

3. Suppose X is a random variable with probability density function

$$
f(x)= \begin{cases}c x e^{-x} & \text { if } x \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find c.

Solution. We have to solve for c :

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{2}^{\infty} c x e^{-x} d x=1
$$

We use integration by parts, letting $u=x$, and $d v=e^{-x} d x$, making $d u=d x$ and $v=-e^{-x}$ to obtain

$$
c\left(\left.(x)\left(-e^{-x}\right)\right|_{2} ^{\infty}-\int_{2}^{\infty}\left(-e^{-x}\right) d x\right)
$$

We use L'Hopital's rule to evaluate the limit $\lim _{x \rightarrow \infty}-\frac{x}{e^{-x}}=$ $\lim _{x \rightarrow \infty} \frac{1}{e^{-x}}=0$. Thus

$$
c\left(\left.(x)\left(-e^{-x}\right)\right|_{2} ^{\infty}+\int_{2}^{\infty}\left(e^{-x}\right) d x\right)=2 e^{-2}-\left.e^{-x}\right|_{2} ^{\infty}=c\left(2 e^{-2}+e^{-2}\right)
$$

Therefore, $c=\frac{e^{2}}{3}$.
(b) Find $E[X]$.

Solution. We use integration by parts:

$$
\begin{aligned}
E[X] & =\int_{2}^{\infty} \frac{e^{2}}{3} x^{2} e^{-x} d x \quad u=\frac{e^{2}}{3} x^{2}, d v=e^{-x} d x, d u=\frac{2}{3} e^{2} x d x, v=-e^{-x} \\
& =-\left.\frac{e^{2}}{3} x^{2} e^{-x}\right|_{2} ^{\infty}+\int_{2}^{\infty} \frac{2}{3} e^{2} x e^{-x} d x \\
& =\frac{e^{2}}{3} \cdot 4 e^{-2}+\frac{2 e^{2}}{3}\left(-\left.x e^{-x}\right|_{2} ^{\infty}+\int_{2}^{\infty} e^{-x} d x\right) \\
& =\frac{4}{3}+\frac{4}{3}-\left.\frac{2 e^{2}}{3} e^{-x}\right|_{2} ^{\infty}=\frac{10}{3}
\end{aligned}
$$

(Watch your signs! I didn't write out each sign step).
4. Describe, in words, whether you think the likelihood of a hurricane during a given period of time is best described in terms of a Poisson distribution or a uniform distribution. Give reasons for your answer.

Solution. This is decidedly not a uniform distribution. The reason is not that hurricanes have seasonal changes in probability - though this is true, the question suggests that a given period of time might be shorter - like a particular month or even a week or a day. Here is a better reason. Suppose it was modeled by a uniform distribution. No matter what probability you might have over a period of time, the integral of the probability is one over all time. But we have no guarantees that a hurricane will actually happen over this period of time. There is, in fact, for any given period of time, a probability that there are no hurricanes. This is a major drawback of the uniform distribution. The other reason Poisson is better is that Poisson is discrete - and so is the outcome if X is the random variable given by, say, the number of hurricanes in a given time period. Generally Poisson is good random variable to model situations in which you want to find the probability a specific event will occur in a fixed time period.
5. Trains leaving Penn Station, New York to New Jersey leave the station every ten minutes. A man arrives at the station at a random time. Let X be the time he will have to wait for the next train to leave.
(a) What kind of random variable is X ?

Solution. This is a uniform random variable with pdf given by

$$
f(x)= \begin{cases}\frac{1}{10} \quad 0 \leq x \leq 10 \\ 0 & \text { otherwise }\end{cases}
$$

(b) What is $P\{X \geq 4\}$?

Solution.

$$
\int_{4}^{\infty} f(x) d x=\int_{r}^{1} 0 \frac{1}{10} d x=\frac{3}{5}
$$

(c) Find $E[X]$ and $\operatorname{Var}(X)$.

Solution.

$$
E[X]=\int_{0}^{10} \frac{x}{10} d x=\left.\frac{x^{2}}{20}\right|_{0} ^{10}=5
$$

Recall that $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}$. We have $E\left[X^{2}\right]=\int_{0}^{10} x^{2} / 10 d x=$ $100 / 3$. Thus $\operatorname{Var}(X)=\frac{100}{3}-25=\frac{25}{3}$.
6. Suppose that X is a uniform random variable on the interval $[-1,1]$. Find the probability density functions of $X,|X|$, and e^{X}.

Since X is uniform on an interval of length 2, the probability density function is given by

$$
f_{X}(x)= \begin{cases}\frac{1}{2} & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

For $|X|$, we first find its cdf. For $0 \leq t \leq 1$,

$$
F_{|X|}=P(\{|X| \leq t\})=P\left(\{-t \leq X \leq t\}=\int_{-t}^{t} \frac{1}{2} d x=t\right.
$$

Therefore

$$
f_{|X|}(t)=\frac{d}{d t} F_{|X|}(t)=\left\{\begin{array}{l}
1 \text { if } 0 \leq t \leq 1 \\
0 \text { otherwise }
\end{array}\right.
$$

Similarly, for $-1 \leq \ln t \leq t$, or, equivalently, $e^{-1} \leq t \leq e$,

$$
F_{e^{x}}(t)=P\left(\left\{e^{X} \leq t\right\}\right)=P\left(\{X \leq \ln t\}=\int_{-1}^{\ln t} \frac{1}{2} d x=\frac{1+\ln t}{2} .\right.
$$

The probability density function is therefore

$$
f_{e^{x}}(t)=\frac{d}{d t} F_{e^{x}}(t)=\left\{\begin{array}{l}
\frac{1}{2 t} \text { if } e^{-1} \leq t \leq t \\
0 \text { else }
\end{array}\right.
$$

