Math 351, Probability
 Problem Set \# 8
 Due Thursday, November 29

1. A pair of fair dice, one red and one blue, are rolled until at least one of them shows a 1 . Let X be the number of times the red die is rolled and let Y be the number of times the blue die is rolled.
(a) Find the joint pmf of X and Y. (Hint: The two dice are rolled the same number of times.)
(b) Find the marginal pmf of Y.
(c) Find $E(X+2 Y)$.
2. The joint probability density function of X and Y is given by $f(x, y)=$ 2 , for $0<x<y x<1$.
(a) Sketch the region on which $f(x, y)>0$.
(b) Verify that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x=1$.
(c) Find the marginal density functions $f_{X}(x)$ and $f_{Y}(y)$.
(d) Are X and Y independent? Why or why not?
3. The joint probability density function of X and Y is given by $f(x, y)=$ $x y$, for $0<x<1,0<y<2$.
(a) Find the marginal densities of X and Y.
(b) Find $P\{X<Y\}$.
(c) Find the density function of $Z=X+2 Y$.
4. X and Y are independent uniform $(0,1)$ random variables. Find the density of $\min (X, Y)$.
5. Suppose that X and Y are independent normal random variables, with $\mu_{X}=5, \sigma_{X}^{2}=9$ and $\mu_{Y}=-1, \sigma_{Y}^{2}=4$.
(a) Find $P\{X>Y\}$.
(b) Find $P\{X+Y>3\}$.
6. Suppose that X and Y are independent exponential random variables, with $\lambda_{X}=2$ and $\lambda_{Y}=2$. Find the density of $Z=X+Y$.
7. If X, Y, Z are independent exponential random variables, each with parameter $\lambda=1$, find the probability that the largest of the three is greater than the sum of the other two.
