MATH 351

Problem Set 6

Due November 8, 2012

1. Suppose

$$
f(x)= \begin{cases}c\left(1-x^{2}\right) & \text { if }-2 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Is there a value of c for which f is a probability density function? Why or why not?
2. Suppose that

$$
f(x)= \begin{cases}c\left(3 x-x^{2}\right) & \text { if } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

is the probability density function of the random variable X.
(a) Find c.
(b) Find $P\{-1 \leq x \leq 1\}$.
(c) Find $E[X]$.
3. Suppose X is a random variable with probability density function

$$
f(x)= \begin{cases}c x e^{-x} & \text { if } x \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find c.
(b) Find $E[X]$.
4. Describe, in words, whether you think the likelihood of a hurricane during a given period of time is best described in terms of a Poisson distribution or a uniform distribution. Give reasons for your answer.
5. Trains leaving Penn Station, New York to New Jersey leave the station every ten minutes. A man arrives at the station at a random time. Let X be the time he will have to wait for the next train to leave.
(a) What kind of random variable is X ?
(b) What is $P\{X \geq 4\}$?
(c) Find $E[X]$ and $\operatorname{Var}(X)$.
6. Suppose that X is a uniform random variable on the interval $[-1,1]$. Find the probability density functions of $X,|X|$, and e^{X}.

