MATH 351

Problem Set 5

Due October 25, 2012

1. Let X be a Bernoulli random variable with parameter $p=\frac{5}{6}$. Find $E[\cos (\pi X)], E\left[3^{X}\right]$, and $E\left[\tan ^{-1}(X)\right]$.
2. An urn contains 9 balls, 4 of which are red and 5 of which are blue. We draw a ball out of the urn 10 times, taking care to replace the ball and shake up the urn between draws. Let X be the number of times that we draw a red ball.
(a) What kind of random variable is X and what are the parameters of the random variable?
(b) What are $E[X]$ and $\operatorname{Var}(X)$?
(c) What is the probability that $X \leq 3$?
3. Suppose that X is a binomial random variable with parameters n and p. Find $E[X(X-1)(X-2)]$.
4. You have to pay $\$ 100$ to play the following game: A fair die is rolled until a 6 appears. If a 6 appears on the nth roll, you win $\left(\frac{6}{5}\right)^{n}$ dollars. The game finishes when a 6 appears. Let X be your winnings from the game.
(a) Prove that $E[X]=\infty$.
(b) Would you pay a million dollars to play this game?
5. Let X be a Poisson random variable with parameter $\lambda=3$.
(a) Find $P\{X>1\}$
(b) Find $E[X(X-1)(X-2)]$.
6. Compare the Poisson approximation with the correct binomial probability for the following cases:
(a) $P\{X=2\}$ when $n=4, p=\frac{1}{2}$
(b) $P\{X=2\}$ when $n=20, p=\frac{1}{10}$.
7. Suppose that a die is rolled until a 6 has appeared five times total (not necessarily in a row). Let X be the number of the roll on which the fifth 6 appears.
(a) What kind of random variable is X ? Make sure to specify any parameters.
(b) What is $E[X]$?
(c) What is $\operatorname{Var}(X)$?
