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1 Parametric Equations

We have seen that the graph of a function f(x) of one variable consists of
a set of points in the xy-plane. These points are the set

{(x, f(x)) : x ∈ D}, where D is the domain of f(x)

The graph of a function has many properties. For example, every
such graph passes the “vertical line test”. This test reflects the
fact that, for every x value, there is exactly one y value, mainly
f(x). We notice that x is always the “input” and y is the “output”
that we get by evaluating f(x).

Example 1.1 How is the graph of a function different from a func-
tion?
Solution: The function describes a way to get a number out for
each x value you put in. The function doesn’t “live” in the plane.
The graph of a function, on the other hand, describes the set of
points {(x, f(x))} in the xy-plane.

Parametric equations are just another way of describing a set of
points in the xy-plane in our case (or in higher dimensions in gen-
eral). Instead of describing these points by {(x, f(x))}, we describe
the points by the set {(x, y)}, where x itself (as well as y) is deter-
mined by a function x(t) (or (y(t)). Here t is the “input”, and it is
called a “parameter”. This is similar to how x is the input in the
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case of a graph of a function. Similarly, y is actually a function y(t)
dependent on the parameter t. Given a particular value of t, one
can find a point in the xy-plane by evaluating (x(t), y(t)). Another
way that people write parametric equations is

x = f(t) and y = g(t)

for some range of t values. The functions f(t) and g(t) replace
the functions x(t) and y(t), respectively, but they are just different
names for the same functions.

Example 1.2 Parametric Equations (Basic)

One use of parametric equations is that it doesn’t rely on the re-
sulting points {(x, y)} to actually be a graph of a function. For
example, the parametric equations

x = 1 and y = t, t ∈ [0, 4]

describes a vertical line segment given by points {1, y} where y goes
from 0 to 4. This obviously doesn’t pass the vertical line test and
could not be the graph of a function.

Example 1.3 You Try It

1. Describe the vertical line segment that goes from (3, 7) to
(3, 14) using parametric equations.

2. Do problem 21 p. 65

Another important example is the case of a circle of radius r.

Example 1.4 You Try It
Find parametric equations for the circle of radius 5 centered around
the origin. If you have trouble, consult the book on page 61.

You can find the formal definition of parametric equations in
your text. The “equations” are x = f(t) and y = g(t). They are
called “parametric” because they depend on a parameter t.
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Remark 1 Any particular point (x, y) on the curve described by
parametric equations x = f(t) and y = g(t) is obtained by a par-
ticular choice of t. You cannot use one choice of t for finding
x and a different choice for finding y. This is illustrated in the
next example.

Example 1.5 The motion of a fly is described by the equations

x = − cos(t) and

y = sin(t), t ∈ [0, 2π]

At what time is the fly at the position (
√

2
2

,
√

2
2

)?

Solution: “At what time” means we’re looking for a value of t that
gives us the point (x, y) = (

√
2

2
,
√

2
2

). This expression

(x, y) = (

√
2

2
,

√
2

2
)

is really two equations that we need to solve using the fact that
x = cos(t) and y = sin(t), mainly

− cos(t) =

√
2

2

and

sin(t) =

√
2

2
.

However we need to solve these equations simultaneously, i.e. the
fly has to be in the appropriate x position and in the appropriate
y position at the same time.

In the first equation, we find that t = 3π
4

and t = 5π
4

are two
solutions to the equation. For the second equation, we find that
t = π

4
and t = 3π

4
are both solutions. The only simultaneous solution

is t = 3π
4
, when both equations are satisfied for the same t value.
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2 Composition of Functions and Parametric

Equations

Recall that if f(x) and g(x) are two functions and the range of g(x)
is in the domain of f(x), then we can form the composition

f(g(x)).

The goal of this section is to understand this composition of func-
tions better.

Example 2.1 This example illustrates the calculations involved with
composition.

Find the composition f(g(x)) when f(x) = sin x3 and g(x) = 1
x2 .

Solution: First make sure you’re clear on the notation: sin x3 =
sin(x3) which is NOT the same as sin3 x = (sin x)3.

f(g(x)) = sin
(
g(x)3

)
= sin

[(
1

x2

)3
]

= sin

(
1

x6

)

or alternatively

f(g(x)) = f

(
1

x2

)
= sin

[(
1

x2

)3
]

= sin

(
1

x6

)
.

Example 2.2 You Try It

1. Do Problems 37, 39 on p. 22.

Example 2.3 The profit made on orange juice as a function of
volume. This example illustrates the concept of composition.

Imagine that x is an amount (volume) of orange juice in litres.
Let g(x) be the price of buying x litres of orange juice. Suppose that
g(x) = 3x, so it costs $3 per litre of orange juice. Now suppose that
f(x) is the amount of money the company earns when collecting $x.
For example, f(x) = .2x, i.e. the company has a profit of 20 cents
for each dollar collected. Notice that x does NOT stand for the
same thing in the context of f(x) and in g(x). As a “variable” in
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the domain of g(x), x is an amount of orange juice. As a variable in
the domain of f(x), x is a quantity of money. The important thing,
however, is that the range of g(x) is the domain of f(x); both are
measured in dollars. Now what does f(g(x)) mean? Since x is first
taken in by the function g(x) (on the inside), we know that x must
stand for an amount of orange juice. Now g(x) is the price of that
orange juice, and f(g(x)) is the amount of profit taken in for that
price. Thus f(g(x)) represents the amount of profit obtained when
x litres of orange juice are sold.

Here’s the explicit calculation:

f(g(x)) = .2g(x) = .2(3x) = 1.5x

or alternatively,

f(g(x)) = f(3x) = .2(3x) = 1.5x.

Now let’s do a parametric composition.

Example 2.4 Suppose that an ant moves along the graph of the
parametric equations given by

x = 2 cos t andy = 3 sin t where t ∈ [0, 2π).

at any time t in the domain. First, convince yourself that this is
an ellipse by finding the Cartesian equation that these parametric
equations satisfy. Notice that 3x = 6 cos t and 2y = 6 sin t, which is
like a circle of radius 6. From this, you might guess that (3x)2 +
(2y)2 = 36. Dividing both sides by 36, you’ll find the equation of an
ellipse in standard form.

Now suppose that the position of a bird depends on the position
of the ant. Suppose that the bird can be found at the position
xbird = 2xant and ybird = 5yant. Can you figure out the position of the
bird as a function of time?

Since the bird’s position depends on the ant’s position, which in
turn depends on time, one suspects this is a composition question,
as compositions always reflect a “chain” of dependencies. In this
case, we see that xbird = 2xant = 2(2 cos t) = 4 cos t. Similarly, ybird =
2yant = 2(3 sin t) = 6 sin t. Thus the bird is also on a (different) ellipse
in the xy-plane.
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Here is a picture of what’s going on when finding f(g(x)). Take
x and first apply g to it, to get g(x):

x −→ g(x)

Now apply f to the value g(x), to get f(g(x)):

g(x) −→ f(g(x)).

Example 2.5 Recognizing functions as compositions. How do you
recognize a function as a composition of others? There may be
more than one answer!!

1. If you’re given f(x) = x7 sin x2, this is NOT the composition of
x7 and sin x2, but the product of these two functions. However,
here is one way of seeing a composition in here: sin x2 is a
composition. Let g(x) = x2, and h(x) = sin x. Then h(g(x)) =
sin g(x) = sin x2. Notice that g(h(x)) = (h(x))2 = (sin x)2 = sin2 x,
which is not the same as sin x2, so the order of composition if
important.

2. Again, let f(x) = x7 sin x2. Let g(x) = x2 and h(x) = x
7
2 sin x.

Then

h(g(x)) = (g(x))
7
2 sin g(x) = (x2)

7
2 sin x2 = x7 sin x2 = f(x).

so indeed we can see f(x) as a composition. However, this is
not very useful from the point of view of differentiation, since
h(x) is hard to differentiate.

3. If you’re given f(x) = (2x + 1)2, then the function on the “in-
side” is g(x) = 2x + 1. What is being “done” to g(x)? It’s
being squared. What function takes anything and squares it?
h(x) = x2. Thus h(g(x)) = (2x + 1)2 = f(x).

4. f(t) = (1 + cos 2t)−4. The “inside” is g(t) = 1 + cos 2t. The
outside function takes whatever is on the inside to the -4th
power. Thus h(x) = x−4. Then

h(g(t)) = (g(t))−4 = (2 cos 2t)−4.
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Notice that it didn’t matter that we wrote h(x) as a function
of x. Since x is just a variable, it stands for “whatever you
feed into h”.

Notice also in this case that g(t) is also a composition of func-
tions. If we let k(t) = 2t and m(t) = 1 + cos t, then g(t) =
m(k(t)) = 1 + cos(k(t)) = 1 + cos 2t.

5. f(t) = (1 + cos 2t)−4 (again). Notice that you could have broken
the function up differently to begin with. Let g(t) = 2t. Let
h(x) = (1 + cos x)−4. Then

h(g(t)) = h(2t) = (1 + cos 2t)−4 = f(t).

This way of breaking up the equation is less useful from the
point of view of differentiating functions, since h(x) is hard
to differentiate without using the chain rule again. We’ll see
more on the chain rule below.

Example 2.6 You Try It

1. Do Exercise 41 on p. 22

3 Taking the Derivative of the Composition

of Functions: the Chain Rule

Theorem 3.1 (The Chain Rule) The chain rule specifies how to
differentiate a composition of functions. Let f(x) = h(g(x)). Then

f ′(x) = h′(g(x))g′(x).

How do you calculate h′(g(x))?

1. Write down the function h(x)

2. Differentiate h(x) with respect to x (don’t worry about g(x)).

3. Evaluate h′(x) at g(x).
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Example 3.1 Consider the function f(x) = (1 + cos x)−4. We notice
that the “inside” is g(x) = 1 + cos x, and the outside function is
h(x) = x−4. Then

h(g(x)) = (g(x))−4 = (1 + cos x)−4 = f(x)

so we may apply the chain rule. We first calculate g′(x):

g′(x) = 0 +− sin x = − sin x.

Now we calculate h′(g(x)) using the steps outlined above.

1. Write down h(x): h(x) = x−4.

2. Differentiate h(x) with respect to x: h′(x) = −4x−5, using the
power rule.

3. Evaluate h′(x) at g(x): h′(g(x)) = −4(g(x))−5 = −4(1 + cos x)−5.

Lastly we use the chain rule:

f ′(x) = h′(g(x))g′(x) = −4(1 + cos x)−5(− sin x) = +4(sin x)(1 + cos x)−5

Notice that the final answer is just using the power rule to
(1 + cos x)−4 times the “derivative of the inside”, which is − sin x.

Example 3.2 You Try It

1. Express f(x) = sin(2x2−1) as the composition of two functions.
What is g(x) and what is h(x)? Check that h(g(x)) = f(x).

2. Find f ′(x) using the chain rule.

3. Do Exercises 7,9,12,13,14,17,19, 23, 27, 30 on page 195 using
the techniques outlined above. Check your answer in the back
of the book.
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4 Another look at the chain rule

You can also do the chain rule by applying the formula:

df

dx
=

df

du

du

dx
.

Why is this the same as above? The answer is very tricky!! Part of
the trick is just notational. Let u = g(x). Then f(x) = h(g(x)) = h(u).
The original chain rule says:

df

dx
= h′(g(x))g′(x).

The term g′(x) is clearly the same as dg
dx

= du
dx

since u = g(x). Let’s
take a closer look at h′(g(x)). Here’s the first trick: The functions
h(x) and h(u) are really the same thing except there’s a variable
change. Similarly, h′(x) = dh

dx
is describing the same function as

h′(u) = dh
du

, except the variable u is used instead of x. Then h′(g(x))
(where the derivative is done with respect to x, and then g(x) is
stuck in for x, is the same as dh

du
, take the derivative of h as a

function of u and then evaluates at g(x). However, u = g(x) means
that you could can just consider dh

du
already as a function of u and

you don’t need to stick in g(x). In practice, in order to evaluate dh
du

,
we do actually plug in g(x) for u, since we want it as a function of
x in the end. This would lead us to the conclusion that

df

dx
=

dh

du

du

dx
.

So here’s the second trick: If we consider f as a function of u, we
mean that f = h(u)! This is a subtle notational issue. To illustrate
this point, consider f(x) = ((x2) + 1)3. On the one hand, when we
write f(x) to mean “stick x into the formula”. In this light, if we
write f(u), we would mean f(u) = ((x2) + 1)3. But considering f as
a function of u is different: let u = x2 + 1. Then by saying “f as a
function of u,” we really mean the function u3. This is exactly the
“outside function”, or what we have been calling h(u)!! Therefore,
dh
du

= df
du

, and sticking that into the equation above, we obtain

df

dx
=

df

du

du

dx
.
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The main point in working problems using this, is that df
du

means to
think of f as a function of u, where u is a convenient substitution
that makes f look simpler. It is not actually f(u), but h(u), the
outside function in our original discussion.

Example 4.1 Differentiate cos(t3 − 5t) using the second form of the
chain rule.

Solution: We use the formula (with t replacing x):

df

dt
=

df

du

du

dt
.

Let u(t) = t3 − 5t. Then f = cos u and df
du

= − sin u = − sin(t3 − 5t).
Also, du

dt
= 3t2 − 5. The final answer is then

df

dt
=

df

du

du

dt
= − sin(t3 − 5t)(3t2 − 5) = −(3t2 − 5) sin(t3 − 5t).

5 Chain Rule and Parameterized Curves

You may be wondering: what does the chain rule and differentiat-
ing functions have to do with parametric curves? The main answer
is the following: if you are given a curve in parametric equations,
how do you find the tangent line to a curve? In particular, how do
you find its slope?

Remark 2 If you have a curve described by the graph of a function
f(x), then the slope of the tangent line at a point P (x0, y0) is f ′(x0)
(the derivative f ′(x), evaluated at P).

Remark 3 If you have a curve described by parametric equations
x = f(t) and y = g(t), then the slope of the tangent line at a point
P (x0, y0) is given by dy

dx
, evaluated at P .

So the real question boils down to: How do you calculate dy
dx

for
a parametric curve (a curve described by parametric equations)?

The answer is using the CHAIN RULE for parametric equations
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Theorem 5.1 (The Chain Rule for Parametric Curves) Let x = f(t)
and y = g(t) be parametric equations for a curve, where t ∈ D, D
a domain in R. Then

dy

dx
=

dy/dt

dx/dt
=

dg/dt

df/dt
.

You may wonder: How is this the chain rule? Multiply both
sides of the equation by dx/dt and get

dy

dx

dx

dt
=

dy

dt

which is the chain rule for calculating dy
dt

. This seems weird: we
have y as a function of t (mainly g(t)). So what does the left hand
side of the equation mean? We are just applying a trick here. We’d
LIKE to have dy

dx
even though we have no explicit expression for y in

terms of x, as we do with Cartesian functions of the form y = f(x).
So we PRETEND that y were a composition with x(t). If it were,
i.e. y(t) = h(x(t)), then by the same reasoning above, we’d obtain
that

dy

dt
=

dy

dx

dx

dt

where x is playing the role that u does in the previous section.
Now it happens that we know dy

dt
and dx

dt
, so we may solve for dy

dx

and it doesn’t matter that we never actually wrote y down as a
composition of functions!!

Let’s try to use this formula:

Example 5.1 Let x = sin t, y =
√

5 sin t. Find the slope of the tangent
curve at t = 2π/3. Then find the equation of the line through this
point tangent to the curve.
Solution: We use the formula:

dy

dx
=

dy/dt

dx/dt
.

By direct calculation, dy
dt

=
√

5 cos t and dx
dt

= cos t. The ratio is then

dy

dx
=
√

5

11



We evaluate at t = 2π/3, but there is no t-dependence, so the answer
is
√

5. To find the line through the curve, we use

y = mx + b =
√

5x + b.

Using the point (sin 2π/3,
√

5 sin 2π/3) = (
√

3
2

,
√

15
2

) we solve for b:

√
15

2
=
√

5

√
3

2
+ b

so b = 0 and the equation of the line is just y =
√

5x.

Example 5.2 You Try It:

1. Let x = cos2 t and y = sin t, t ∈ [0, 2π). Find the slope of the
tangent line to the curve at t = π

4
by finding

dy

dx
=

dy/dt

dx/dt
.

and then evaluating at t = π
4
. Then find the equation of the

line tangent to the curve at this point.

2. Do problems 33, 35, 37, 39 on p. 195.
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