Lecture 1 (8/26/13)

Monday, August 26, 2013
4:53 PM

Logical Language

- Logical language - differs from 'spoken/understood' language.
- If it rains, I will drive to work.
- What will happen if it doesn't rain? Cannot determine. Only known what happens if statement is 'true' (rains)
- I will go to the movies or the party.
- Does not exclude the possibility of both. Normal connotations would suggest it is either/or.
- He is nice.
- Isn't specific. He cannot be known until defined. It is not a declarative statement

Statement is a declarative sentence. It is true or false.

Ex:
The radius of the earth is 20,000 meters.

- Is declarative because it is either true or false without necessarily knowing which...

Ex (NOT a statement):
If X^{2}, then $X=3$.

- If $X \in$ \{integers $\}$, then the statement is false since $X=-3$ could be the case.
- If $X \in$ \{positive integers\}, then statement is TRUE.
- We cannot establish that the sentence is TRUE or FALSE.

We must know the "universe"/ constraints.

Do your Homework!

- Neither TRUE or FALSE

Did you do your homework?

- (Question - not declarative)

Statement

Statements can be:
"10 is an even number."
" 9 is an even number."

Can be represented mathematically...

$$
\mathrm{P}=\text { "10 is an even number." }
$$

$\mathrm{Q}=\mathrm{"} 9$ is an even number."

```
P and Q: "10 is an even number."
    "9 is an even number."
```

P and $Q=P^{\wedge} Q$
P or $Q=P v Q$

$$
\begin{array}{|l|l}
\hline P \text { or } Q=P v Q & \\
\hline \text { "Not" } P=\sim P \quad->\quad \begin{array}{l}
\text { "It is not the case that } 10 \text { is an even number." } \\
\hline 10 \text { is not an even number." }
\end{array}
\end{array}
$$

P - "I am going to the party."
Q - "I am going to the movies."

PvQ - " I am going to the party or the movies."
*includes the possibility of both

What is ~(PvQ)?
"I am not going to the movies or the party." ?

- Can be difficult to understand

Do NOT need to understand the statement to determine TRUE or FALSE.

- Use Truth Table.

\mathbf{P}	Q	PvQ	$\sim(P v Q)$
True	True	True	False
True	False	True	False
False	True	True	False
False	False	False	True

We can also understand $\sim(\mathrm{PvQ})$ as equal to $(\sim P)^{\wedge}(\sim \mathrm{Q})$ (IE: Not P and Not Q$)$.
*This is universally true and will be proven later

