Lecture 1 (8/26/13)

Monday, August 26, 2013 4:53 PM

Logical Language

- Logical language differs from 'spoken/understood' language.
 - If it rains, I will drive to work.
 - What will happen if it doesn't rain? Cannot determine. Only known what happens if statement is 'true' (rains).
 - I will go to the movies or the party.
 - Does not exclude the possibility of both. Normal connotations would suggest it is either/or.
 - He is nice.
 - Isn't specific. He cannot be known until defined. It is not a declarative statement

Statement is a declarative sentence. It is true or false.

Ex:

The radius of the earth is 20,000 meters.

- Is declarative because it is either true or false without necessarily knowing which...

Ex (NOT a statement):

If X^2 , then X=3.

- If $X \in \{\text{integers}\}$, then the statement is false since X=-3 could be the case.
- If $X \in \{\text{positive integers}\}$, then statement is TRUE.
- We cannot establish that the sentence is TRUE or FALSE.

We must know the "universe"/ constraints.

Do your Homework! - Neither TRUE or FALSE

Did you do your homework?

- (Question - not declarative)

Statement

Statements can be:

"10 is an even number."

"9 is an even number."

Can be represented mathematically...

P = "10 is an even number." Q = "9 is an even number."

P and Q: "10 is an even number." "9 is an even number."

 $P and Q = P^Q$

P or Q = PvQ

P or Q = PvQ

"Not" P = ~P	->	"It is not the case that 10 is an even number."
		"10 is not an even number."

- P "I am going to the party."
- Q "I am going to the movies."
- PvQ " I am going to the party or the movies." **includes the possibility of both*

What is ~(PvQ)?

"I am not going to the movies or the party." ?

- Can be difficult to understand

Do NOT need to understand the statement to determine TRUE or FALSE.

- Use Truth Table.

Р	Q	PvQ	~(PvQ)
True	True	True	False
True	False	True	False
False	True	True	False
False	False	False	True

We can also understand ~(PvQ) as equal to (~P) ^ (~Q) (IE: Not P and Not Q). *This is universally true and will be proven later