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Abstract 

We derive the exact variance of the allocation proportions in a clinical trial employing a randomized play-the-winner 
design. Such a result has application in planning studies. (~) 1997 Elsevier Science B.V. 
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1. Motivation 

The randomized play-the-winner rule (Wei and Durham, 1978) is an adaptive randomization design 
occasionally used in clinical trials (see, for example, Bartlett et al., 1985; Tamura et al., 1994). The rule 
can be best depicted as an urn model. Initially an urn contains ~A type A particles and ~8 type B particles. 
Patients are assumed to arrive sequentially and will be randomly assigned to either treatment A or treatment B. 
When a patient is ready for assignment to treatment, a particle is drawn from the urn. If  a type A particle is 
drawn, the patient is assigned to treatment A. If  a type B particle is drawn, the patient is assigned to treat- 
ment B. The particle is replaced and the patient's response, assumed to be dichotomous (e.g., success/failure) 
is observed. Response is assumed to be observable before the next patient is ready for randomization. I f  the 
patient's response was a success on treatment A or a failure on treatment B, fl type A particles are added 
to the urn. I f  the patient's response was a success on treatment B or a failure on treatment A, fl type B 
particles are added to the urn. In this way, the allocation proportions are skewed away from 0.5 according 
to whether treatment A or treatment B is doing better thus far in the trial. Such a design has obvious ethi- 
cal consequences (see Rosenberger and Lachin, 1993 for a discussion). In most cases, ~A = ~B, unless there 
is prior information that one wants to incorporate into the initial urn composition. For notational purposes, 
let ~ = eta + ~ .  

Let PA and p8 be the underlying probabilities o f  success given treatments A and B were assigned, respec- 
tively, and let qA = 1 -pA,  q~ = 1 - p s .  Let N~ =-- (NA,,Ns,  ), where NA, and NB, are the numbers of  patients 
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assigned to treatments A and B, respectively, in a trial of n patients• Previous work (Rosenberger and Sriram, 
1997) has shown that 

~A + fl(i - 1)qB f12 E{NA,} 
k = i + l  

where 2 =PA - q B .  So given any underlying success probabilities (which can be chosen a priori by the 
physician), we can give the exact expected allocation proportions of the trial. Some measure of variability is 
also desirable. In this paper, we derive the exact variance. 

Letting VA =qB/(qA + qB) and vB = 1 - vA, it is well-known (see Wei, 1979 for example) that 

NAn/n ~-~ VA. 

Rosenberger (1992) shows that, when 2 < 0.5, 

v/-~(N--An" v A ) ~ N ( O ,  vAv~3+22) 1 _- -L-~j .  (1.1) 

However, there is a phase transition at 2 = 0.5. When 2 = 0.5, the limit law is 

vA) N N(0,~2), (1.2) \ n 

where a 2 is unknown. When 2 > 0.5, the limiting distribution is unknown and is presumed to be non-normal. 
In the subsequent development, we derive the exact variance of NAn and discuss its asymptotic form when 
2~>0.5. 

2. Jordan representation 

Let II0 = (~A, ~B) represent the initial um composition and let Yn-= (YAh, YBn) represent the urn composition 
after n trials. Note that INnl = n  and IY~]--=~ + fin, where [. I is the 5el-norm. Letting M=((mij)) be the 
urn's generating matrix, i.e., mij is the expected number of balls added to the urn of type j, j =A,B, given 
type i was drawn, i = A, B. Then M = tiP, where 

[q l p =  PA 
qB Pa 

Putting P in its Jordan form, we obtain 

where ~1 = ( I ,  1)', ~z =(--VB, VA)', 4~1 = (vA,ve), and 4~z = ( - 1 ,  1). We can write N.=(N~I)qkl+(Nn~2)~2, 
leading to 

E{N~'N. } =E{[~'~(N.~'I) + 4,;(N. ~'2)] [(N. ~1 )4'1 + (N, ~2)4,21}. 
Since N ~ I  is a constant, subtracting off E(N~)E(N.) leaves only the term 

q~z~b2(E{ ~;N;N. ~2 } - [E{N. ~2 }12) (2.1) 

in the variance-covariance matrix of Am. We now derive and solve recurrences for the moments in (2.1) and 
others that are needed for their calculation. 
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3. Derivation 

Let c = ~/fl, 

E{rn~2} 

which implies 

E{r.~2} 

Next note that 

E{Nn~2} 

So 

let kn = ~ + (n - 1)fl, and let F( • ) be the gamma function. First we note that 

=E{E{YnIYn-1}}W2=E{Yn-~ + fl  Yn-IP}~2=E{Yn-I~2(I + c + ~ _  I)  }, 

that 

F(c + 2 + n) F(c) 
= Yo~2 (3.1) F(c + n) F(c + 2)" 

E{No~P2} = 0 and 

1 },2 

"-j~o E :  I ~ 2  ~ Yo~2 F(c) ~ F(c + 2 + j )  (3.2) 
E{Nn~2}= I kj-~-~ j =  --fi - F(c + 2) F(c+I+j ) '  

• = j=0 

by (3.1). 
For second moments, let AN.  = Nn - N._ 1 and AYn = Yn - Yn- 1. We note from the argument leading to 

(3.1) that 

E{Y.IYn_I}= ff  Y,_,P. (3.3) 

Let g, =E{~Y~Y.W2}, with 9o =(YoUr2) 2. Then 

9, = g, - i  + 2 E { ~  AYe' Y~-I ~2} + E { ~  AY" AY n ~'2}. (3.4) 

The middle term on the RHS of (3.4) is 2flAg,,-l/kn. By conditioning on Yn-I we immediately find 

fl2IYoA(n-1)PA+Ys(n-')qs 0 
E{AY~ A¥.} = ~- YA(,-,)qA q- YB(n-1)Ps 

Recognizing that E{AY. } ~1 = fl and, using (3.1), E{ Ay.  } ~2 = 2E{ Y._ 1 } ~2/(c + n - 1 ) gives 

r(c)  
/~E{AY.} = ~2~, + -fi Yo~'2 r (c  + ,~) 

Hence 

t l 

= ~ 2 v A v s  + ~,~(vA - v e ) ( ~ s v A  - ~ A v s )  - -  

Substituting into (3.4) gives the recursion 

( 2 2 )  
9n= 1 + 9n-I +An,  c + n - 1  

F(c + 2 + n - 1 ) ~)2" 
- -  r ( c  + -~ 

F(c) F(c + 2 + n -  1) 
r(c + 2) r(c + n) (3.5) 
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which has as its solution 

F(c + 22 + n) n 
on- F(c+n) ~ F(c+j) j : o Aj F(c---+~-+ j) '  (3.6) 

where the {Aj} are defined in (3.5). 
We do a similar analysis for hn = E{ ~ Y'~Nn ~2}, where h0 = 0. We again work with the recursive form 

hn = hn-I + E { ~  Y : - i  ANn ~2} -~ E { ~  Ayd Nn-1 ~2} q- E { ~  AV; AN.~2}. (3.7) 

The second and third terms on the RHS of (3.7) are obtained by conditioning as ~E{Yd_ i Yn-1}~z/kn and 
fl ~E{P'  Yd_ inn_ i } ~2/kn, respectively. For the fourth term, note that 

SO 

f P '  diag{E{ Yn_ 1} }, E{E{AY~ ANnIYn-1}} = 

E{~AY'~ANn ~z}-- 2 , c + n ~  ~ diag{E{ Yn-i ~2}}. 

We write E{ Yn-i} = ~J~l (E{ Yn-1 } ~i  ) -[- ~J~2(E{ Yn-i } ~2 ), thereby giving 

2 2 F(c) F ( c + A + n - 1 ) ~ 2 .  
¢ + ,  - 1 ~{ v"-~} = '~¢1  + ~ r°v'2 r (c  + ~ - - - - -  5 r (c  + , )  

Hence 

! i B. -E{~P~ Ay/, ANn ~2} 

= 32vAv8 + ;t(vA - vs)(~svA -- ~ A V s ) - -  

An 
- + (2 - 1)~vAvs. fl 

Substituting into (3.7) gives the recursion 

c + n - 1  hn-1 +Bn + 

which has as its solution 

F(c) F(c + A + n - 1 )  
F(c + ~) F(c + n) 

an -  1 

fl(c + n -  1)'  

(3.8) 

r ( c + , ~ + n ) ~ - ~ (  os-i ) r ( e + j )  
h, - r(c + n) 4 + (3.9) j=l f l ( c + j - 1 )  F ( c + 2 + j ) '  

where the {Bj} are defined by (3.8) and (3.5) and the {gj} are defined by (3.6) and (3.5). 
Finally, we set i, = E{ W~N'N, W2}, yielding the recurrence 

i, = i ,- i  + 2 E { ~  AN" Nn-1 ~2} + E { ~  AN~ AN,  ~2}. (3.10) 

The second term on the RHS of (3.10), by conditioning on Yn-i, is 2hn-1/kn. For the third, E{AN~n ANn} = 
diag{E{ rn-l } }/kn, so fl 2 E{ ~ AN" ANn ~a } = On. Hence 

V ~n-i 2hj + ~-~ Bj 
in=f--~l f l(c~j) ~ -~' (3.11) 

"= j = l  
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with obvious interpretation if 2 = 0 .  Here the {hj} are defined by (3.9),(3.8), (3.6), and (3.5), and the {Bj} 
are defined by (3.8) and (3.5). 

Substituting (3.11 ) and (3.2) into (2.1) yields the main result: 

Var(NA.) 

n--2 n--1 
F(c + l) 

= 2VAVB Z F(c+22+l)  Z 
1=0 k= 1+1 

F(c + 22 + k - 1 )  ~ F(c +j  + 2) 
F(c+k+2)  Z . . ,F (c+j+I )  

j = k  

r ( c )  
+ (vA - v~)(~svA - ~,4VS)F( c + 2) 

n--2 F(c+,~+l-1) ~ C(c+22+k-1)~-~ 1F(c+j+2) 
xy~=o r ( c + 2 2 + l )  k=,+l - ~ - + F ~ G T ) )  J=~ r ( c + j + a )  

2 

fl F(c + 2) F(c + j + 1 ) j = 0  

n--1 r(c--~.-k) ~-~ F (c+j+2)  
+ nvAvB + 22VAVe ZIc=1 F(c + k ;-2) ~=k= F(c + j + l ) 

r(c) ~ r ( c + 2 + k - 1 )  
+ ~(vA - VB)(~RVA -- UAVB)F( c + 2) k=l F(c +-ki 

r ( c )  
+ (vA - v~)(~svA - ~Av~)-~( c + 2) 

~-~ F(c+2+k-1)~-2}~ ~ F(c+2+j )  
x ~(-~;-~;-~  F ( c + j +  1)" 

k= l  j = k  

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

4. A s y m p t o t i c s  and a p p r o x i m a t i o n s  

Terms (3.12)-(3.17) give the exact variance for any parameters in an easily programmable form. Now we 
give asymptotics and approximations, using Stirling's formula and integral approximations. We develop these 
informally, though everything could be made rigorous, if one desires. 

Analysis of (3.12)-(3.17) yields terms that are of order n 2'~ (of order n In n when 2 = 1/2), of order n, and 
of order n ;~ In n. We are only interested in terms that are of exact order n and higher, so we ignore terms 
(3.16) and (3.17), which are O(n'~lnn). Term (3.15) can be written as 

1 + 2  
nVAVB ( ~ _  2){ I  + o(1)}. (4.1) 

Terms (3.13) and (3.14) are of order n z~. Term (3.12) is the most important. It can be approximated by 

vA vB (4.2) 22 (C q- l )-22n22 2n - 1 - - -~  + n  . 
/=0 
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For example, consider the derivation of  (4.2) from (3.12) for 2 > 0. By Stirling's formula the innermost 
sum is 

n--I 
E ( ¢  + j ) 2 - 1 { 1  + O ( j - 1 ) } .  

j=k  

Since (c + j )~ - I  = fjj+l (c + x) ~-1 dx + O(j  2-2), this sum is 2-1{(C + n) 2 -- (c + k) 2} + O(k2-1 ). Evaluating 

the middle sum similarly gives 

n) + - 2(c + n)~(c + l + 1) '~ + (c + l + 1) 2'~} + O(n'~). 

Evaluating the outer sum in the same manner gives (4.2) with an error of  o(n). Note that the first term of  
(4.2) is a valid asymptotic expansion only as c ~ c~. A correction for this is given in (4.4). 

If 2 = 1/2, we get 4VAVBn lnn, indicating that the 0 "2 in (1.2) should be 4yArn. It is interesting to note this 
binomial-like behavior at the phase change. When 2 < 1/2, combining (4.1) with (4.2) yields the asymptotic 
variance of  {(3 + 22)/(1 -22 )} rAys ,  given in (1.1). 

Now consider the case 2 > 1/2. The sum in (4.2) is dominated by its terms near l = 0; it can be approximated 
by ~--~=0(c + l) -2)~. If  c is fairly large, yet small compared to n, we can approximate the sum using the 
integral 

f 
oo cl--22 

x -2;~ dx - 22 - 1' 
c 

For example, if  c = 5 and 2 = 0 . 6 ,  the relative error is 2%. Terms (3.13) and (3.14) contribute to the asymp- 
totics for 2 > 1/2. Interestingly, if  the initial urn is started at the limiting distribution; i.e., if  ~A/~, = vA/v,, 
the terms vanish. Up to a factor 1 + o(1), terms (3.13) and (3.14) can be written as 

(1) A -- VB)(O~BI) A -- O~AVB) r ( c )  c_2n22 _ (O~BV A -- O~A1)B) 2 f r ( c )  ~2 n 22 ' 
r(-Y-U O I, r(¢ + 4) j 

If c is reasonably large, this becomes approximately 

(OtBVA-~.-fl~--O~AVB) ~[ VA ~--UB (~BV A - -O~AUB)I(~)  _ 

To summarize, we give the following approximation to terms (3.12)-(3.17):  

1 
Var(NAn)--- f f  (n)z~Dn -- nVAVB(l + 2) 2, 

where 

D, - -  1 + ~ , ~  c22[(c -Jr- n )  1-22 - c 1-22] - (O~BO A -- OrAl)B) 2 --~ (13A -- VB)(O~BVA -- ~2A1)B) (4.3) 

Using Eqs. (4.3) captures the logarithmic behavior at 2 = 0 . 5  and avoids an undue increase in the variance 
approximation for 2 near 0.5 due to the factor 1 - 22 in the denominator of  Dn. Further, for 2 < 0.5, it gives 
the correct asymptotic variance. For 2 > 0.5, it has the correct n 2~ term, though the coefficient is off by a 
small multiple. To correct for this, 

2 2 \ c ]  - ( -L-~c  t t c +  
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can be replaced by 

n--2 
rAYs ~ F(c + l) n2 ~ 

22 = F(c+l+22) ' 
(4.4) 

5. Discussion 

For large randomized play-the-winner clinical trials, where 2 is presumed not to exceed 0.5, the limiting 
distribution does not depend on the initial urn composition. The fact that it does when 2 > 0.5 leads one to 
question whether the randomized play-the-winner rule should be used in that scenario. Such clinical trials 
with high success rates on both treatments are rare, but possible. It is well-known for a small randomized 
play-the-winner trial (n = 12) that the selection of the initial urn composition was pivotal (see Bartlett et al., 
1985), and its improper selection led to somewhat disastrous results. 

The randomized play-the-winner rule is a special case of the generalized Friedman's urn (GFU; Athreya 
and Karlin, 1968). Such an urn model has been suggested for use in clinical trials of K > 2 treatments (Wei, 
1979), bioassay (Rosenberger et al., 1997), and psychophysics experimentation (Rosenberger and Grill, 1997). 
A general exact and asymptotic theory for the GFU has been actively sought. Elements of this emerging theory 
can be found in recent work of Aldous et al. (1988), Bagchi and Pal (1985), Gouet (1989, 1993), Mahmoud 
and Smythe (1991, 1992, 1995), Mahmoud et al. (1993), and Smythe (1996). Using the Jordan form of the 
generating matrix, as we did in this paper, should enable variance computations of much more complicated 
designs with larger generating matrices, but we leave that for the industrious reader. 
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Note added in woof  

The authors thank Padmanabhan Seshaiyer for finding the computational error: 
Equation (3.16): The upper limit o f  the summand should be n instead o f  n - 1. 
Equation (3.17): The upper limit o f  the outer summand should be n - 1 instead o f  n. 
Equations (3.12) and (3.13): The outer summand should start at l = 1 instead of  l = 0. All  subsequent 

terms with l = 0 should be replaced with l = 1, including equations (4.2), (4.4), and several quantities in 
the middle o f  page 238. 

The previous correction is compensated by adding an additional term, which we will call (3.18), to be 

added after (3.17): 

r(c) ~r(c+~+j)~-~r(~+2~+k-1) 
+ p  ( ~ s v A 2  _ a .4vs )2F(c+22)  j=l F ( c + j +  1) k=l F ( c +  2 + k )  

This term arises from the A0 term in equation (3.6). The omission of  this term affects several terms in the 
asymptotic approximation in Section 4, in particular, equation (4.3) and two o f  the three equations immediately 
above it (not numbered). 

Equation (4.3): remove --(CtBVA -- ~AVB) 2. This term should also be removed from the equation found 4 
lines above (4.3). 

In the equation 6 lines above (4.3), the factor 

j should be replaced with F(c  + 22) + \ F(c + 2 ) ]  " 


