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Abstract

A variety of engineering applications that involve coupling different physical phenomena, often
require detailed finite element analysis to be carried out over complex domains. Often such analysis
may be accomplished by dividing the global domain into several local subdomains over each of which
a local model can be analyzed independently. The global solution can then be constructed by suitably
piecing together local solutions from these individually modeled subdomains. However, during the
assembly, it is often too cumbersome, or even infeasible, to coordinate the meshes over separate
subdomains. One must therefore, employ non-conforming techniques to accomplish such modeling.
In this paper, we develop a non-conforming computational methodology via the mortar finite element
method to solve a coupled problem where we are interested in determining the effects of temperature
variations on a given flow or the transfer of heat within the flow. Using this method the solution over
different subdomains with different multigrid levels is efficiently computed. Our numerical results
clearly suggest that the proposed methodology is robust and stable.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, there has been increasing interest in studying coupled phenomena arising
from industrial applications such as energy conversion processes, energy storage, the design
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of power plants and cooling towers, and crystal growth from the liquid phase, as well as
in natural and environmental applications such as meteorology, oceanography, climatology
and many more. A thorough understanding of heat transfer, the temperature field, and the
associated flow field is therefore, of crucial importance in such applications.

To study the effects of temperature on a fluid, we analyze a coupled model where the
temperature is described by the convection–diffusion equation, �T/�t + �u ·∇T =��T +Q

coupled with the flow given by, ��u/�t − ���u + (�u · ∇)�u + ∇p = �f in � × (0, T ). Here �
is the thermal diffusivity and � is the viscocity and the coupled system is solved along with
the incompressibility and boundary conditions. The source term �f in the fluid equation is
related to the temperature in the convection–diffusion equation in order to reflect the fact
that changes in temperature cause variations in the fluid’s density and hence leads to a
coupled problem. In such problems, it is common to have regions with different flows with
different temperatures. To model this effectively, one may employ non-overlapping domain
decomposition techniques for coupling different grid meshes. The mortar approach (see for
example [3–5,16] and references therein) is one such non-conforming domain decomposi-
tion method that allows the coupling of different subdomains with non-matching grids and
discretization techniques within a mathematical framework for a variety of applications (see
[8,15] and references therein). The basic idea is to replace the strong continuity condition
at the interfaces between the different subdomains by a weaker one and obtain the best
approximation error.

In order to enforce this continuity over domains with different subgrids, it is also important
to construct efficient iterative solvers for the algebraic linear system that arises [1,7,14]. In
this regard, multigrid techniques for mortar finite element methods have also been developed
[6,10]. The idea is to guarantee that the iterate is contained in a subspace where the saddle
point problem is positive definite. In many cases this approach requires the exact solution
of a modified Schur complement system within each smoothing step which may be too
expensive in the multigrid algorithm. The purpose of this paper is to introduce a non-
conforming computational methodology that employs the multigrid approach to solve a
coupled non-isothermal Navier–Stokes system and which can be used in conjunction with
multiprocessor architectures.

2. Model problem and its discretization

2.1. Weak formulation

In order to define a weak formulation of the model problem, let us introduce the continuous
bilinear forms a(�, �u, �v) = 2

∑n
i,j=1

∫
� �(�x)Dij (�u)Dij (�v) d�x for all �u, �v ∈ H1(�) and

b(�v, r) = − ∫
� r∇ · �v d�x for all r ∈ L2

0(�) and for all �v ∈ H1(�). Here � may be a L∞(�)

function. The trilinear form c( �w; �u, �v)is defined by c( �w; �u, �v)=∑2
i,j=1

∫
� wj(�ui/�xj )vi

d�x for all �w, �u, �v ∈ H1(�). For details concerning the function spaces introduced, the
bilinear and trilinear forms and their properties, one may consult [2,9,12,13,17].

Let � be an open domain with boundary �. One part of the boundary �1 ⊂ � we pre-
scribe velocity Dirichlet boundary conditions. On another part of the boundary �2 ⊂ �
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temperature Dirichlet boundary conditions are prescribed. Let �f ∈ L2(�) be the body
force, Q ∈ L2(�) the heat source, �gv ∈ H1/2(�1) the prescribed imposed velocity over �1
satisfying the compatibility condition and �gT ∈ H1/2(�1) the prescribed imposed temper-
ature over �2. The velocity, pressure, temperature, the stress vector fields and the heat flux
(�u, p, T , ��, qn) ∈ H1(�) × L2

0(�) × H 1(�) × H−1/2(�) × H−1/2(�) satisfies〈
��u
�t

, �v
〉
+ a(�, �u, �v) + c(�u; �u, �v) + b(�v, p) + 〈��, �v〉� = 〈 �f , �v〉,

b(�u, r) = 0,〈
�T

�t
, w

〉
+ a(�, T , w) + c(�u; T , w) + 〈qn, w〉� = 〈Q, w〉,

〈�u, �s〉�1
= 〈�gv, �s〉�1

,

〈T , s〉�2
= 〈gT, s〉�2

(1)

for all (�v, r, w, �s, s) ∈ H1(�) × L2
0(�) × H 1(�) × H−1/2(�1) × H−1/2(�2). We note

that system (1) must be solved for the stress vector �� = ��u/��n + �np ∈ H−1/2(�) and the
heat flux qn = −��T/��n ∈ H−1/2(�) as well. We employ a Boussinesq approximation
for �f = (1 − �(T − T0))�g, where T0 is the average temperature of the medium, � is the
coefficient of thermal expansion and �g the gravity vector. This approximation allows the
flow to be driven solely by a temperature gradient. If a fluid at rest is isothermal, then these
driving forces are zero. However, heating produces thermal buoyancy forces.

2.2. Non-conforming decomposition

We now introduce the non-conforming mortar formulation of the model problem. Let the
domain � be partitioned into m non-overlapping subdomains {�i}mi=1 such that ��i ∩ ��j

(i 
= j ) is either empty, a vertex, or a collection of edges of �i and �j . In the latter case, we
denote this interface by �ij which consists of individual common edges from the domains
�i and �j . Let �f be in L2(�), Q in L2(�), �gv in H1/2(�1), �gT in H 1/2(�1). We assume �� and
qn equal to zero over �−�1 namely assuming zero stress tensor and zero heat flux whenever
non-Dirichlet boundary conditions are imposed. The velocity, pressure, temperature, stress
field and heat flux (�ui, pi, T i, ��ij , q

ij
n ) ∈ H1(�i ) × L2

0(�
i ) × H 1(�i ) × H−1/2(�ij ) ×

H−1/2(�ij ) must satisfy the non-isothermal Navier–Stokes system〈
��ui

�t
, �vi

〉
+ a(�, �ui, �vi) + c(�ui; �ui, �vi) + b(�vi, pi) + 〈��ij , �vi〉�ij

= −〈��g�(T i − T0), �vi〉,
b(�ui, ri) = 0,〈

�T i

�t
, wi

〉
+ a(�, T i, wi) + c(�ui; T i, wi) +

〈
q

ij
n , wi

〉
�ij

= 〈Q, wi〉,
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〈�ui, �si〉�1
= 〈�gi

v, �si〉�1
,

〈T i, si〉�2
= 〈gi

T, si〉�2
,

〈Ki �ui − Kj �uj , �sij 〉�ij = 0,

〈KiT i − KjT j , sij 〉�ij = 0, (2)

for all �vi ∈ H1
�1

(�i ), ri ∈ L2
0(�i ), wi ∈ H 1

�1
(�i ), �si ∈ H−1/2(�1), si ∈ H−1/2(�2),

�sij ∈ H−1/2(�ij ) and sij ∈ H−1/2(�ij ), for i = 1, 2, . . . , m where the operator Ki is the
projection operator (usually the identity) from the space trace ��ij ui ∈ H 1/2(�ij ) to itself.
We employ the same projection operator for velocity components and for temperature. Note
that, if the projection operators Ki reduce to the identity operator for all i then the problem
in (2) is clearly equivalent to (1).

2.3. Finite element discretization

Let h be a finite element discretization parameter in each subdomain which tends to zero.
We consider partitioning the discretized domain �h in m non-overlapping polygonal sub-
domains �i

h. Over each subdomain �i
h, we employ independent conforming finite elements

(standard Taylor–Hood). By starting at the multigrid coarse level l0, we subdivide �i
h and

consequently �h into triangles or rectangles by unstructured families of meshes T
i,l0
h . At

this coarse level l0, as at the generic multigrid level l, the triangulation over all �i
h are

dependent and obey finite element compatibility constraints along the interfaces �ij
h . Based

on the simple element midpoint refinement different multigrid levels can be built to reach
a complete unstructured mesh T

i,l
h for finite element over the entire domain �h at the top

finest multigrid level nt . Let the maximum size of the triangulation of the multigrid level l
be hl .

Over every macro domain �i
h the coupled problem can be solved over a different level

li generating a solution mesh over �h consisting of different meshes. We denote �i
hli

to be
the subdomain i where the solution will be computed at the finest multigrid level li . Here,
hli denotes the maximum size of the triangulation of subdomain �i

h, where the equations
are solved. Note that we do not enforce any compatibility across the interface of any two
subdomains �i

h and �j
h which are assumed to only share a few nodes, with local solutions

being computed over each subdomain at different levels.
The finite element bases for the approximate solution can be obtained in a similar way.

Finite element approximation spaces can be generated in the usual way, as a function of
the characteristics length hl over each multigrid level l resulting in different approximation
spaces over the solution mesh �i

h. On this mesh, we compute the velocity field �ui
h at the

level l over �i
hl

and an extended function ûi
h is defined over all �h with the same basis

functions and over each level l in a standard and regular way. In some part of the domain the
solution will not be computed at the top level but a projection operator from the coarser level
can always be used to approximate the solution over the extended domain �h and therefore
an approximation to the extended function ûi

h is always available. This extended function
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has the same value at the same point node if the node of the coarser mesh is included in the
finest mesh and this is always the case if the different levels are generated by successive
midpoint refinements.

2.4. Multilevel non-conforming approximation

Let us choose the families of finite-dimensional spaces Xhl
⊂ H1(�) and Shl

⊂ L2
0(�)

and Phl
= Xhl

|��, with suitable approximation properties [11] that will allow us to build a
regular conforming approximation over each grid and such that the approximate solution
belongs to Xhl

. The mortar decomposition problem over the domains �i
h (i = 1, 2, . . . , m)

solved on the level li surrounded by the domains �j
h with j ∈ Ii (Ii is the set of the

neighboring regions of i) can be obtained by discretizing (2). In the mortar finite element
method ��ij

h and q
ij
h can be seen as Lagrange multipliers for the velocity matching equations

on �ij
h . Given �f ∈ L2(�), Q ∈ L2(�), �gv ∈ H1/2(�) and �gT ∈ H 1/2(�) we have

to find (�ui
hli

,n, p
i
hli

,n, T
i
hli

,n, ��ij
h , q

ij
h ) ∈ Xhli

(�i
h) × Shli

(�i
h) × Xhli

(�i
h) × Phli

(�ij
h ) ×

Phli
(�ij

h )satisfying the non-isothermal Navier–Stokes equations

1

�t
〈�ui

hli
,n, �vi

hli
〉 + a(�ui

hli
,n, �vi

hli
) + c(�ui

hli
,n; �ui

hli
,n, �vi

hli
)

+ b(�vi
hli

, pi
hli

,n) + 〈��ij
h,n, �vi

hli
,n〉�ij

h

= 1

�t
〈�ui

hli
,n−1, �vi

hli
〉 − 〈��g�(T i

hli
,n − T0), �vi

hli
〉,

b(�ui
hli

,n, r
i
hli

) = 0,

1

�t
〈T i

hli
,n, w

i
hli

〉 + a(�h, T
i
hli

,n, �vi
hli

) + c(�ui
hli

,n; T i
hli

,n, w
i
hli

) + 〈qij
h,n, w

i
hli

,n〉�ij
h

= 1

�t
〈T i

hli
,n−1, w

i
hli

〉 + 〈Q, wi
hli

〉,

〈�ui
hli

,n, �si
hli

〉�1h
= 〈�gi

vhli
, �si

hli
〉�1h

,

〈T i
hli

,n, s
i
hli

〉�1h
= 〈�gi

T hli
, si

hli
〉�1h

,

〈Pli ,lk (�ui
hli

) − Plj ,lk (�uj
hli

), �sij
hlk

〉�ij
h

= 0,

〈Pli ,lk (T
i
hli

) − Plj ,lk (T
j
hli

), s
ij
hlk

〉�ij
h

= 0, (3)

for �vi
hli

∈ X�1h
∩ H1

�1
(�i

h), r
i
hli

∈ Sh(�i
h), w

i
hli

∈ X�1h
∩H 1

�1
(�i

h), �si
hli

∈ Phlk
(�1h ∩�i

h)

si
hli

∈ Phlk
(�1h ∩ �i

h), �sij
hlk

∈ Phlk
(�ij

h ), and s
ij
hlk

∈ Phlk
(�ij

h ), for n = 1, 2, . . . , N and

i = 1, 2, . . . , m where j ∈ Ii andlk = max{li , lj } over the multigrid levels available at
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the boundary �ij
h . In order to assure the greatest accuracy the projection operator Pli ,lk (�u)

projects the velocity from the level li to the level lk which is the finest grid present on
the boundary �ij

h . With this hypotheses also the Lagrange multipliers ��ij
h , q

ij
h can be dis-

cretized and computed on the finest grid available on �ij
h . Since the mesh on the multigrid

are unstructured and quite openly constructed the mesh between the domain �i
h and the

neighboring domain �i
h can be quite different. Very fine meshes on the region of interest

and coarse meshes can be handled with little effort.
We solve system (3) by computing simultaneously the solution for both pressure and

velocity. An iterative coupled solution of the linearized and discretized incompressible
Navier–Stokes equations requires the approximate solution of sparse saddle point problems.
We employ a Vanka-like [18] relaxation operator for the multigrid solution with the mortar
finite element formulation for solving the coupled model problem.

3. Computational experiments

In this section, we demonstrate the performance of the non-conforming computational
methodology that has been developed to solve the coupled non-isothermal Navier–Stokes
model problem. By using this computational technique we will show that, it is possible to
explore geometry with different meshes and obtain fast and accurate solutions.

In Fig. 1 on the left, a three-channel geometry is shown which we use for numerical
computations. As one can see in Fig. 1 the fluid domain �h is divided into five regions.
The top and the bottom regions, denoted by �1 and �2 respectively, are large areas of fluid.
These two regions are connected through three narrow channels �3, �4 and �5. The domain
�h is insulated but different temperature profiles are maintained along the channels. The
boundary �h consists of three rectangular perimeters. The vertical boundary along the first
channel is denoted by �1 on the left and �2 on the right. The vertical boundary along the
second channel is denoted by �3 on the left and �4 on the right. Finally, the vertical boundary

Fig. 1. Computational domain on the left and a regular mesh over level l0 on the right.
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Fig. 2. Mesh over coupled levels l3 − l2 (case B) on the left and mesh at level l3 (case A) on the right.
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Fig. 3. U and V components of the velocity field, dynamic pressure P and variation in the temperature �T , along
the y-coordinate at 0.025 m from the left side for different mortar cases A–C.
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Fig. 4. U and V components of the velocity field, dynamic pressure P and variation in the temperature �T , along
the y-coordinate at 0.075 m from the left side for different mortar cases A–C.

along the third channel �5 is denoted by �5 on the left and �6 on the right
as shown in Fig. 1. In Fig. 1 on the right, the grid at the level l0 is illustrated. The first
multigrid level l0 is the coarse mesh designed to contain all the relevant information such
as boundary conditions and geometric details. The mesh is an unstructured coarse mesh of
isoparametric rectangular finite elements with quadratic polynomial for temperature and
velocity representation. The other levels li (i = 1, 2, 3) are generated by an unstructured
grid generator by midpoint refinements. The computations in the regions �i

h (i = 3, 4, 5)

should be accurate in order to capture the temperature gradients and the flow motion and
therefore solved on the finest grid l3. In Fig. 2 some possible non-conforming decom-
positions are illustrated, when the mesh level l3 over the channels is coupled with dif-
ferent mesh levels over �1

h and �2
h. In Fig. 2 on the right the uniform mesh is shown

over at level l3. This configuration is the reference configuration and it is defined as case
A. In Fig. 2 on the left (case B) the mesh at the level l3 over �i

h (i = 3, 4, 5) is cou-
pled with level l2 over �1

h and �2
h. In the case C, we consider the coupled level l3 − l1.

The boundary conditions for this problem are homogeneous Dirichlet boundary conditions
for the velocity and known profiles of temperature along the boundary �i , i = 1, . . . , 6.
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Fig. 5. U and V components of the velocity field, dynamic pressure P and variation in the temperature �T , along
the x-coordinate at 0.33 m (case C), 0.66 m (case B) and 1 m (case A) from the bottom side of the region �h.

Homogeneous Neumann boundary conditions are applied in the rest of the boundary for
the temperature.

As explained previously, one can use the information from the coarse grid to impose
boundary conditions on the domains �3

h, �4
h and �5

h. The procedure computes the Lagrange

multipliers ��ij
h , qij

h , the boundary stresses and the surface heat fluxes, implicitly. In this case
the solution �uhli

and Thli
is projected by the standard finite element projection operator (the

same of the standard multigrid) over the finest grid at level l3 obtaining the extended solution
for ûh and T̂h over �1

h and �2
h. The extended solution generates the boundary conditions for

the computation of the solution on the finest grid, which is the union of all �i
h for i =3, 4, 5.

The velocity and the temperature on the mesh interfaces are computed iteratively in full
agreement with the multigrid approach.

In Figs. 3 and 4 the pressure, the velocity and the temperature solutions p̂h, ûh, T̂h along
the y-coordinate are plotted for different distances from the left side of the channel �3.
Note that the pressure plotted corresponds to the dynamic pressure. Figs. 3 and 4 show the
distributions at 0.025 and 0.075 m, respectively, for the different mortar configurations in
the cases A–C. The force that drives the motion is the gradient of temperature between the



e1454 E. Aulisa et al. / Nonlinear Analysis 63 (2005) e1445–e1454

two sides of the channels which is of 40 ◦C. A good resolution for the velocity, pressure and
temperature requires a mesh at level l3 in the channel. The solution of the mortar problem in
case B is good for both velocity and temperature. The mortar configuration in case C gives
reliable temperature distributions while the flow computations must be improved in some
regions. In Fig. 5 the velocity field, dynamic pressure and temperature along the x-coordinate
at 0.33 m (case A), 0.66 m (case B) and 1 m (case C) from the bottom side of the region �1

h is
shown. All these computations are performed with the mortar configuration corresponding
to case B. Oscillations in velocity, pressure, and temperature due to the convective flow are
captured and it can be considered satisfactory. The fact that different grids can be used in the
narrow channels with respect to the large domain enhances the possibility of reproducing
flows in region with different order of magnitude by using reasonable mesh grids.
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