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Abstract 

We present a design for adaptive survival trials, where the probability 
of randomization to one of two treatments is skewed away from 0.5 
according to the current value of the logrank statistic. A formula mapping 
the logrank statistic onto [O, 11 is given, which is then used to bias a coin 
used for randomization. Simulation evidence shows that the allocation 
scheme works well and offers a more ethical alternative when lifetime 
data are available from other patients during the recruitment period. Power 
is not adversely affected by the resulting unequal allocation. The usual 
test statistic appears to be standard normal under the proposed allocation 
scheme. 

Copyright O 1997 by Marcel Defier, Inc. 
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1. Introduction 

Rosenberger and Seshaiyer 

Most phase I11 clinical trials of two treatments employ an equal allocation scheme. 
Such schemes are often unattractive to clinicians and volunteers, as they mandate a 
5 0 8  chance of being assigned to the less effective treatment, provided a treatment 
effect exists. For many years, adaptive designs have been proposed as a compromise. 
As data accrue during the course of a clinical trial, this information is used to skew the 
allocation probabilities to favor the treatment performing better thus far. Recent trials 
employing adaptive designs (1,2) and several more in the works suggest renewed 
interest in these designs. 

Most of the adaptive designs proposed in the literature, however, are limited 
to binary responses that are ascertainable fairly quickly (3). Such designs have 
focused on urn models ( 4 3 ,  where balls of different colors in the urn represent 
different treatments. A patient is randomized by drawing a ball at random from 
the urn. Based on the patient's response (success/failure), balls are added to the 
urn according to some rule. Successes usually generate balls representing the same 
treatment, and failures alternate treatments. In this way, the urn composition is 
skewed to favor balls representing treatments that have been more successful thus 
far (or less failure-prone). 

Other techniques for adaptive designs have been proposed. These include 
the family of adaptive biased coin designs (6), which change the probability of 
assignment to treatment after patient or group of patients according to some rule that 
incorporates previous responses. Recently, a specific adaptive biased coin design has 
been proposed for continuous outcomes (7). Treating a clinical trial as a two-armed 
bandit problem has been explored (8), as have Bayesian methods (9). 

Many clinical trials are long-term survival trials, with a limited recruitment 
period, delayed response, censoring, and competing risks. In this paper, we propose 
an adaptive design for survival trials under these settings. When a patient is ready 
for randomization, a function of the current value of the logrank statistic is used 
to bias a coin, which is then used for randomization. This was first proposed, 
but never explored, by Rosenberger and Lachin (3). In this paper we perform a 
major simulation study to examine the operating characteristics of the design under 
different survival distributions. 

Previous work on adaptive survival trials has appeared in the literature (10,ll). 
The designs in these papers allocate deterministically based on numbers of deaths 
in each arm, and hence the designs are not fully randomized. They also employ a 
sequential stopping rule. Most clinical trials in the United States use a fixed sample 
design and interim monitoring. Our design assumes a fixed sample size and also 
skews the allocation probabilities according to the relative efficacy of the treatments, 
making it fully randomized. We recently became aware of a paper (12) that proposes 
using the Gehan statistic to develop an adaptive strategy for survival trials. 
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Adaptive Survival Trials 

2. Methods 

We use the usual Mantel formulation of the unnormalized logrank statistic to develop 
a mapping onto [0,1] that exceeds 0.5 if treatment A has been doing better thus far, 
and is less than 0.5 if treatment B has been doing better. Define (0 < tl < . . . < tK) 
to be the ordered event times for all patients in the trial (where r, is the time from 
recruitment to event, i.e., allowing for staggered entry). At each event time t i ,  a 2 x 2 
table is constructed with 6i = 1 if the event occurred on treatment A, 0 otherwise 
(in the continuous time model, ties are assumed not to occur). Let nji  be the number 
of patients at risk on treatment j ( j  = A, B) immediately prior to the event time, 
and let Ni = nAi + nBi.  Then under the hypergeometric model, the numerator of 

the logrank statistic computed at time r is given by E ~ ; ' { S ~  - nAi / N i l ,  where, for 
convenience, we make K a function of t (i.e., the total number of events occurring 
up to and including the time of computation, t). When there is no censoring, 

where n j  is the total number randomized to treatment j up to time t and N = 
n ,  + n B .  [This bound is conservative if there is censoring.] Let FT- be the history 
of the events and censorings to t. Let X(r) = 1 if a patient is randomized to 
treatment A at time r ,  and 0 if the patient is randomized to treatment B at time t. 
We suggest the following mapping: 

This idea is similar to that of Rosenberger (7) in dealing with immediate continuous 
outcomes using a nonparametric rank test. The denominator may be zero early in 
the trial. In this case, equal allocation should be used until sufficient data accrue 
(i.e., pr-  = 1/21. 

3. Details of the Simulation 

A major simulation was performed on a SUN workstation in C++. Random num- 
bers were generated using an efficient algorithm (13) and exponential, lognormal, 
and Weibull survival times were generated using standard transformations (14). 
Each simulation was based on 10,000 replications. Both the adaptive allocation 
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620 Rosenberger and Seshaiyer 

scheme and equal allocation were simulated, so that operating characteristics could 
be compared. 

The simulated clinical trial assumed a limited recruitment period, staggered 
entry, a fixed duration, and uniform censoring, characteristics of many survival trials. 
The duration of the trial was assumed to be 1.5936 (in arbitrary units), at which 
point patients who had not died or were not already censored were considered to 
be administratively censored. Recruitment was assumed to be uniform over [0,1]. 
Censoring was assumed to be uniform over [0,1.5936] and was added to a patient's 
recruitment time. The trial's duration of 1.5936 was chosen because if survival is 
exponentially distributed with parameter 1, the probability that a patient recruited 
at time 0 is censored equals 0.5 (15). 

Under Ho, the survival distribution for both treatments was assumed to be 
either exponential with scale parameter 1, Weibull with shape parameter 4 and 
scale parameter 1, or lognormal with mean 0 and variance 1. Each distribution was 
examined for n = 150. Like censoring, the randomly generated survival time was 
added to a patient's recruitment time to obtain the patient's time of death. The first 
occurring time (censoring, death, or end of study) was taken and backed up to start 
at calendar time 0. 

For alternative hypotheses, the control treatment was assumed to have the null 
distribution, while the parameters of the experimental therapy varied. For exponen- 
tial survival, the scale parameter was varied; for the Weibull distribution, the shape 
parameter was fixed at 4 and the scale parameter was allowed to vary; for the log- 
normal distribution, the variance was assumed to be 1 with the mean varying. We 
used Latta's suggested values (15) for parameters under the alternative and n was set 
to yield reasonable power for comparison between adaptive and equal allocation. 
Simulated power was computed for a = 0.05, two-sided. 

4. Results 

Table 1 examines the behavior of the logrank statistic under Ho. In particular, the 
proportion of logrank statistics that fell in the 0.01, 0.05, 0.10, and 0.20 tails (two- 
sided) is given. One can see that, for each distribution, the tail probabilities for 
adaptive and equal allocation are almost identical. This leads to the conclusion that 
the test statistic is standard normal under the adaptive allocation scheme under Ho. 
Table 2 supports this conclusion. The mean value and standard deviation of the 
10,000 generated logrank statistics are given, as well as the mean proportion of 
patients assigned to A, NA/n (averaged over 10,000 replications) and its standard 
deviation. The logrank statistic has mean 0 and variance 1 for both allocation rules. 
Also, the allocation proportions, NA/n, are close to 112, although the variability is 
clearly larger for adaptive allocation. 
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Adaptive Survival 'Trials 621 

Table 1. Proportion of Logrank Statistics Falling in Left (L) or Right (R) Tail of Standard Normal 
Distribution Under H, (n = 150) (simulations based on 10,000 replications) 

Equal allocation Adaptive 

Distribution Tail probability (both sides) L R L R 

Exponential 

Weibull 

Lognormal 

Table 2. Simulated Operating Characteristics Under H ,  (based on 10,000 replications) 

Distribution Allocation rule Mean (N,/n) SD (N,/n) Mean (logrank) SD (logrank) 

Exponential Adaptive 0.499 0.085 0.001 1.01 
Equal 0.500 0.041 0.010 0.99 

Weibull Adaptive 0.498 0.101 0.001 1 .OO 
Equal 0.500 0.041 0.003 0.99 

Lognormal Adaptive 0.500 0.083 0.001 1.01 
Equal 0.500 0.041 -0.002 1 .OO 

Table 3 explores operating characteristics under various alternatives. Again the 
mean and standard deviation of N A / n  are given. Also given is the simulated power 
(the proportion of test statistics falling in the rejection region). One can see a clear 
advantage in terms of allocation proportions for adaptive allocation. In each case, 
10-20% more patients are assigned to the better treatment under adaptive allocation. 
Power differs by only 1% for each alternative examined. One can conclude that the 
unbalanced allocation induced by the adaptive design does not sacrifice power. 

Other simulations, besides the few reported here, were performed and similar 
results were observed. 

5. Conclusions 

Clinical trials necessitate continual compromises between individual and collective 
ethics (16). The adaptive design presented in this paper will allow the demands of 
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622 Rosenberger and Seshaiyer 

Table 3. Simulated Operating Characteristics Under H A  (based on 10,000 replications) 
- - 

Distribution Parameter n  Allocation rule Mean ( N , 4 / n )  SD ( N , / n )  Simulated power 

Exponential 1.6 150 Adaptive 0.569 0.087 0.49 
Equal 0.500 0.041 0.50 

0.625 150 Adaptive 0.430 0.075 0.6 1 
Equal 0.500 0.041 0.62 

1.2 800 Adaptive 0.532 0.046 0.46 
Equal 0.500 0.0 18 0.46 

0.833 800 Adaptive 0.467 0.043 0.62 
Equal 0.500 0.018 0.63 

Weibull 1.6 30 Adaptive 0.558 0.114 0.73 
Equal 0.501 0.091 0.72 

0.625 30 Adaptive 0.390 0.114 0.98 
Equal 0.501 0.091 0.98 

Lognormal 0.4 400 Adaptive 0.61 1 0.049 0.60 
Equal 0.500 0.025 0.60 

-0.4 400 Adaptive 0.406 0.047 0.63 
Equal 0.500 0.025 0.64 

collective ethics to be satisfied. In particular, the design is fully randomized, provides 
minimal loss of power, allows for standard analyzes using the logrank statistic, and 
ensures a control group of adequate size, which can then be used for convincing 
follow-up studies. However, the gains toward individual ethics are substantial. For 
the cases we studied, between 10 and 20% of patients will be assigned to a more 
effective treatment, if one exists. 

The nearly identical power under an adaptive design fits well with the con- 
clusions of Sposto and Krailo (17), who found the logrank statistic to be equally or 
even slightly more powerful when there are modest imbalances. In fact, they found 
that as the treatment difference becomes larger, the larger the allowable imbalance 
becomes to attain similar power. This is precisely the scenario in which adaptive 
methods are most attractive. 

Our design is relatively conservative, in that allocation proportions were not 
skewed more than 2: 1 in any of the cases we explored. As stated above, this will allow 
for a control group of adequate size, if follow-up studies are necessary. However, the 
less conservative statistician may wish to see larger imbalances, particularly if the 
disease is especially grave. One could use a weighted logrank statistic to increase 
the imbalance, such as one that weights early deaths more heavily. One must be 
careful to determine if power will be impacted by a less conservative scheme. 

Patient response is often confounded with covariates unrelated to treatment. 
It would be nice to adapt on the basis of an adjusted treatment effect to account for 
covariates deemed a priori to be important. The procedure described in this paper 
could be modified by using the score statistic for the treatment effect from a Cox 
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Adaptive Survival Trials 623 

model rather than the logrank test in the mapping. In the case of no covariates, 
the score statistic is equivalent to the logrank test (with no censoring) (18). When a 
patient is recruited, the score statistic (unnormalized) from a Cox model is computed, 
and mapped to [O,l]. Such a model-based approach can also be used to adjust for 
any time trend in characteristics of recruited patients (19). The inability to address 
time trends has been identified as a pivotal drawback of adaptive designs (20). 

An underlying assumption to all research in adaptive designs is that some 
information on previous patients' responses be available at recruitment. This is 
not the case in some long-term survival trials, where the recruitment period ends 
before any responses become available. The methods discussed in this paper are not 
applicable in that scenario. Extending the recruitment period for these trials may be 
possible and desirable in order to apply this methodology. In some studies where 
the primary outcome is not ascertainable in a reasonable time, it may be possible to 
use a surrogate measure on which to adapt. For example, in the fluoxetine trial (2), 
score on the Hamilton Depression Scale was used as a surrogate, and the adaptive 
design was based on those scores. It is not clear how to analyze the primary outcome 
variable when a surrogate is used for adaptation, but this is a viable way of adapting 
when it is not possible to use the primary outcome. 

A number of interesting theoretical questions are evident, but will not be 
addressed in this paper. These include: 

1. Finding the asymptotic properties of NA / n . 
2. Rigorously proving the asymptotic normality of the logrank statistic 

under a dependent allocation scheme, along with finding the correct 
permutational variance. 

3. Extending item (2) to account for sequentially computed logrank statis- 
tics arising from an interim monitoring plan. 

4. Exploring early stopping in the context of a dependent allocation scheme. 
Potentially, monitoring NA/n could be used to determine a stopping rule. 

These are very challenging questions, and likely will involve counting processes 
(21). However, for the practitioner, our simulations show that the design used should 
be of little consequence in the analysis. 

Finally, we note that simulations are a very useful tool in designing appropriate 
studies. To facilitate this, our simulation programs can be found on the internet via 
ftp://ftp.math.umbc.edu/pub/padhu/Patient.tar. 
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