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Quantification of the mechanical behavior of hyperelastic membranes in their service
configuration, particularly biological tissues, is often challenging because of the compli-
cated geometry, material heterogeneity, and nonlinear behavior under finite strains. Pa-
rameter estimation thus requires sophisticated techniques like the inverse finite element
method. These techniques can also become difficult to apply, however, if the domain and
boundary conditions are complex (e.g. a non-axisymmetric aneuryvsm). Quantification can
alternatively be achieved by applyving the inverse finite element method over sub-domains
rather than the entire domain. The advantage of this technique, which is consistent with
standard experimental practice, is that one can assume homogeneitv of the material
behavior as well as of the local stress and strain fields. In this paper, we develop a
sub-domain inverse finite element method for characterizing the material properties of
inflated hyperelastic membranes, including soft tissues. We illustrate the performance of
this method for three different classes of materials: neo-Hookean, Mooneyv Rivlin, and
Fung-exponential. [DOI: 10.1115/1.1574333]
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Introduction

When quantifying the stress-strain behavior of a material, one
typically sccks experiments that correspond 1o tractable boundary
value problems. Prime examples in finite clasticity include
uniaxial and biaxial stretching tests wherein one focuses on a gage
length or central region in order to avoid complexities due (o
“edge effects.” That the deformation is homogencous, or nearly
so, in the central region is advantageous both theoretically and
experimentally—it renders the boundary value problem trivial and
it ensures that the inherent averaging in the measurements (which
arc always over finite, rather than infinitesimal, lengths) represents
well the actual values of stress and strain. In some cascs, however,
the investigator does not have control over the experimental con-
ditions. For example, there may be a need to evaluate nondestruc-
tively the properties of an elastomeric structure in its service con-
dition or to quantity the behavior of a biological soft tissue while
preserving its native geometry. In such cases, where the associated
boundary value problem is complex, one often employs the in-
verse finite element method [ 1-3]. Briefly, nonlincar inverse finite
clement methods require the solution of a torward finite element
problem (c.g.. solve for displacements given the loads and mate-
rial properties) for many different values of the material param-
eters until the solution matches well the associated experimental
measurements (c.g., displacements). To facilitate 4 judicious
choice of the material parameters, one couples the finite clement
solution with a nonlinear regression algorithm that estimates the
“best-lic” material parameters by comparing cach finite clement
solution to the experimental data in a (nonlinear) least squares
sensce.
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Although the inverse finite element method has become the
method of choice in many arcas of experimental mechanics, it is
not without shortcomings. In particular, in cascs wherein the ma-
tertal is heterogencous, it could be nearly impossible to find si-
multancously a unique set of material parameters for many differ-
ent regions. Likewise, 1t can be difficult to measure, and thus
prescribe exactly, the requisite boundary conditions over the entire
physical domain. In the spirit of that which the experimentalist
desires, therefore, we suggest that it can be advantageous to apply
the inverse finite clement method over separate sub-domains
rather than the entire domain. That is, onc can definc a sub-
domain via a small number of interconnected finite clements
within a small region wherein measurements are to be made and
then prescribe as boundary conditions the appropriate values (e.g.,
displacements) of the outer nodes that define the sub-domain;
hence, the nonlinear regression can be performed by comparing
finite clement determined values at the inner nodes within the
sub-domain with their experimental counterparts to find the “*best-
fit" material parameters. Not only docs this sub-domain approach
avoid difficulties associated with measuring all of the boundary
conditions for the entire domain, it also allows one to calculate a
small (or single, assuming local homogeneity) set of material pa-
rameters in cach estumation. One can map overall material hetero-
geneity, of course, by simply repeating the analysis over multiple
sub-domains, that is, regions of interest. Finally, this sub-domain
approach is also consistent with the experimental reality that it is
casier o measure quantities at a small number of locations on a
structure at multiple cquilibrium contigurations rather than to
measure quantities at all locations on a structurc at only a few
cquilibrium configurations. Indeed, for nonlincar behavior, one
must make measurements over the full range of strains of interest,
that is, for many cquilibrium configurations. Hence, again, the
proposed sub-domain method 1s not only computationally more
efficient than a full inverse method, it is consistent with standard
practice in experimental finite elasticity, the focus herein.

To illustrate the sub-domain approach, we present numerical
simulations for pressurized hyperelastic membranes, including
biological soft tssues. In particular, we demonstrate the utility of
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a single (displacement-based) sub-domain inverse finite element
approach wherein the sub-domain is defined by four, non-
coplanar, triangular clements that share a common central node.
The displacements of the four outer nodes are treated as boundary
condittons whercas the displacement of the single inner node is
compared (0 “experimental” data via a Marquardt-Levenberg re-
gression that determines the best-fit values of the material param-
cters in a nonlincar least squares sensc. Numerical simulations are
presented for three different material models—neco-Hookean,
Mooney-Rivlin, and Fung-exponential—and two different experi-
mental situations, the inflation of isotropic spherical and aniso-
tropic axisymmetric membranes. As it will be shown, the sub-
domain inverse finite clement method can estimate well the
malterial parameters provided the experimental noise is not exces-
sive and that data can be collected in multiple equilibrium con-
figurations. Both of these conditions are consistent with imple-
menting any similar method, and thus do not introduce new
demands on the experimentalist.

Background

Membrane Constitutive Theory. An ideal elastic membrane
bchaves like a thin plate or shell having negligible bending stiff-
ness. Consequently, the in-plane stresses are assumed to be uni-
form through the thickness of a membranc and the out-of-planc
stresses are assumed to be neghgible. Large elastic deformations
of membranes can thus be described by the governing differential
cquations of motion for shells by simply neglecting all terms con-
taining bending moments or transverse shears. These differential
cquations arc often written in terms of the in-plane physical com-
ponents of the Cauchy stress resultant tensor 'T. Note, therefore
that a general hyperelastic constitutive relation for a membranc
can be written in physical components as [4]

2 w

Tzl =—F ) — 1
al ! b i /)/(-/(vll ( )

b -/1

where a. b, i, j=1, 2 and repeated indices imply summation over
Fand 2 per the usual convention. Here, 7, arc physical compo-

nents of the Cauchy stress, ;. F,; are physical components of

the 2-D deformation gradient ¥, J, (= Fy—F5175)) is the
determinant of F, ¢j; are physical components of the right
Cauchy-Green tensor € =F"F), /i is the thickness of the de-
formed membrane, and wois o 2-D strain energy function. Note
that w is defined per initial surface arca and it depends only on the
in-planc physical components of C. Equation (1) allows the physi-
cal components of the stress resultant (0 be calculated without
knowing the thickness in cither the deformed or undeformed
configuration.

Although identification of a specific form of w(C,,) for a given
matcrial is often very challenging (see [4]), herein we assume that
such a form is known. Hence, as noted above, our focus is on
calculating values of the material parameters that are embodied in
a prescribed form of e,

Parameter Estimation. Best-fit values of material param-
cters can be determined by minimizing the error between experi-
mental and calculated quantities, which for membranes could be
cither displacements or in-plane stress resultants. In cither case,
we minimize a nonlinear sum-of-the-squares function & given by
the usual vector inner product as,

i
E= D UP D)=V )V, (B)~V )} (2)
1
where ¥, is a vector of experimental (measurable) quantities,
Y (b)) contains the calculared (analytically or via the finite ele-
ment method) quantities, » is the vector of unknown material
parameters, and m is the number of equilibrium configurations.
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Although several efficient strategies are available to minimize the
error in (2), we adopt the Marquardt-Levenberg algorithm. It can
be written as [4],

T I+ YD A= —[) (F.(B)—T )" 3)

where, Ap=59""~p the Jacobian J= (¥ (b)13b)'" for the
corresponding, iteration counter i, and y ts the Marquardt param-
eter. Note that this method requires an initial guess for b, and the
solution strategy depends on the size of y in comparison to the
norm of J7.J. As the Marquardt parameter becomes large, the
minimization tends towards a mcthod of steepest descent; as it
becomes small, the minimization tends towards Newton’s method.
This method has been shown to be robust in finite strain applica-
tions [5-6] and is readily available as the default unconstrained
optimization tool, leastsqr.m, in the MATLAB platform.

There are, of course, other issues (besides the minimization
process) that one must account for while estimating parameter
values. These include, respecting requirements imposed by funda-
mental relations of mechanics; restricting the parameter scarch
spacc used by the regression algorithm; avoiding over-
parameterization; performing sensitivity analyses; determining ap-
propriate confidence intervals for the parameters; etc. A combina-
tion of all these factors is imperative for identifying a robust
constitutive descriptor [6], but our focus herein is the estimation
itself.

Next, we discuss some analytical approaches to obtain the cal-
culated quantities of interest. Although these are limited for most
soft tissues, they motivate our subdomain approach which de-
pends on finite element methods to obtain an approximate solution
for ¥, .

Analytical Approaches. The general cquations governing
membrane mechanics are derived casily, but their solution is often
not as straightforward. In experimental investigations, therefore,
the focus is often on simple geometrics and loading conditions
that admit homogencous (c.g., an in-plane biaxial test) or axisym-
metric (¢.g., inflation or indentation) deformations [7].

For example, consider a homogencous biaxial deformation of a
planar membrane. Let xy =N X+« Xy, X,= kX, +X,X, and
X3=A3X5, where x,, and X4 are locations of material particles in
the deformed and the undeformed configurations, respectively.
The parameters N and «;(i=1,2) can be “measured” casily by
tracking the motions of multiple markers that are affixed to the
surface in the central region: in a sense, then, these markers define
a “'sub-domain” of interest. The out-of-plane stretch ratio, X5, is
often calculated from the incompressibility constraint (J =det F
=1). Because of the homogencous and planar stress field, equi-
librium is satisfied identically and the membrane stresses (T,) can
be calculated directly from (1) provided the form of the strain-
energy function is known. Moreover, one can experimentally mea-
sure the principal stress resultants (T,) in terms of uniformly
applied normal forces acting over the respective deformed
lengths. These results for T, and T, can then be input into a
stress-resultant based regression algorithm to estimate the values
of the material parameters via (3). An example is in [8].

A similar approach can be followed for an axisymmetric infla-
tion of a membrane. The governing differential equations can be
solved exactly for the principal stress resultants 7 in terms of the
experimentally measurable uniform distension pressure £ and lo-
cal principal curvatures k; (measured using edge detection), with
i=1, 2 denoting the respective meridional and circumferential
dircctions. This yields T,. The components of the two-
dimensional deformation gradient tensor F are also measured lo-
cally, often by tracking triplets of closely placed markers that arc
affixed to the surface. Again, therefore, one actually interrogates
the behavior in a sub-domain. That is, provided the strain-cnergy
function w is known, the membrane stresses ('T,) can be calcu-
lated from (1) and this admits a stress-based estimation of the
material parameters as discussed in [9].
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From the preceding discussion we see that for both in-plane
homogeneous and axisymmetric deformations, one can obtain so-
lutions exactly by exploiting the simplified geometry and loads.
Moreover, experimentalists naturally seek to interrogate behavior
in small regions, or sub-domains. In order 10 test many soft-tissues
in their native geometry, however, the experimental boundary
value problem is much more complicated and it is often too dif-
ficult to obtain an analytical solution. One has to then employ
more sophisticated methods like the finite clement method to sup-
ply )7, to the regression algorithm for estimating the values of the
parameters. We submit that such finite element solutions should
also be restricted to a sub-domain.

The Inverse Finite Element Method

The inverse finite element method was introduced carly on [1]
as an application of finite clements to characterize the mechanical
propertics of nonlincarly clastic solids. Since then, this method
has proved to be useful in providing reasonable estimates of the
best-fit values of material parameters in many cases.

General Approach. For a given undcformed configuration
and boundary conditions, as well as an initial guess for the values
of the material parameters, a displacement (or stress) based finite
clement model calculates (as a forward problem) a candidate so-
lution and hence the requisite ¥, . 11, for the same undeformed
configuration and boundary conditions, one can measure the dis-
placements (or stresses) at corresponding nodal locations ()7(,).
then the values of Y, and )7‘, are compared via a least-squares
regression method to assess the goodness of the finite element
solution. If the error in the regression is within the prescribed
tolerance, then the guessed parameter values are accepted as the
best-fir values; it not, this procedure continues iteratively until
good estimates arc found for the material parameters. Hence the
inverse finite element method, in nonlincar problems, simply re-
quires multiple forward solutions based on updated “guesses” for
the parameters from the regression algorithm. Let us now consider
the direct method employed hercin.

Finite Element Framework. There is an ecnormous literature
available on finite clement methods that are applicable to soft
tissue mechanics [e.g. [10-14]]. Among others, these papers dem-
onstrate the ability of finite element methods 0 solve various
membrane inflation problems: planar, axisymmetric, and non-
axisymmetric. Herein, we follow the developments in [13,14],

which solve membrane inflation problems using the principle of

virtual work. This formulation requires that the net virtual work
by internal and external forces in moving through virtual displace-
ments s zero. Mathematically, we have

j ()‘w(l/\:f Pii.85du (4
Q, 0

where €}, and Q are the undeformed and current domains respec-
tively, w is the strain-cnergy function defined per unit initial sur-
face arca A, P is the distending pressure that acts on the current
configuration in the direction /7, and 6x is the virtual change in the
nodal positions. Equation (4) can be rewritten with respect to the
undeformed configuration (i.c. a total Lagrangian formulation)
and discretized using standard isoparametric shape/interpolation
functions with the associated quadrature rules. The relationships
henee derived result in a system of nonlincar algebraic equations
that can be solved via an iterative Newton-Raphson method. Note
that the nonlincarity arises due to the finite strains (geometric) as
well as the constitutive relations (material). See the aforemen-
uoned papers for details.

Sub-Domain Characterization

Although standard inverse finite clement methods can be very
useful in characterizing soft tissues, they become very challenging
when the domain is highly complex (c.g. a nonaxisymmetric an-
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Fig. 1 Schema of a general membrane inflation. Panel A

shows five markers that can be tracked experimentally using a
video system whereas Panel B shows the associated four-
element computational “sub-domain” Q ;C 1. The sub-domain
can be made as small as allowed experimentally, and can be
repeated at multiple locations on the specimen to explore pos-
sible material heterogeneities.

curysm). In such cases it is difficult to estimate the material prop-
erties over the entire domain (£}) because the material is typically
heterogencous, and imposing the boundary conditions requires
measuring cach, which is often a daunting task. Motivated by the
standard approach 1n experimental mechanics, a natural alternate
approach would be o solve such problems over a sub-domain
(€2,C€)), rather than over the entire domain, of the tissue. This
simplification allows us to assume, in many cases, that both the
material and the local stress and strain fields are homogencous
within the solution domain. This not only helps us in estimating
the values of the material parameters, it also assists us in explor-
ing possible regional variations in the material properties over the
whole domain by simply considering multiple sub-domains indi-
vidually. Figure 1 shows one such sub-domain {1, (embedded in
the whole domain £), consisting of five non-coplanar nodes that
demarcate four non-coplanar triangular clements. Since the nodes
of the sub-domain €2, arc chosen sufficiently close, the curved
boundaries that connect the respective nodes can be well approxi-
mated by straight lines. It 1s emphasized, however, that the five
nodes demarcating €2, must be non-coplanar to capture the curva-
ture of an inflated membrane; for planar problems the nodes can
be coplanar. Moreover, five nodes appear to be a minimally ad-
visable set, for three nodes are required in cach of the two in-
planc directions to approximate the corresponding curvatures. The
discretized system resulting from the principle of virtual work
(i.c., the forward problem) is solved via a Ncwlon-RaPhson iera-
tive procedure. Hence, one can obtain calculated (Y,) solution
sets for a variety of equilibrium configurations.

Just as in the case of axisymmetric inflations, one can perform
non-axisymmetric membrane inflation experiments by placing
markers on the surface of the specimen and tracking their posi-
tions at various pressurc levels. Details of a video-based system
for performing such finite strain inflation tests on biomembrancs
can be found in [15]. The positional data thus obtained yields the
experimentally measured displacements (;\’(,);

Again, therefore, calculated values g}’,,(b)zf,.) can then be
compared with the experimental data (Y,=X,) in the Marquardt-
Levenberg regression algorithm to estimate values of cach mate-
rial parameter. Because the goal of this paper is to evaluate the
potential of such estimations, we must know the true solution.
Hence, we generate “experimental data” by adding random noisc
to a forward finite element solution as, X, =X .= noise. The robust-
ness of the inverse method can then be checked easily, as the
estimated parameter values must be close to the parameter values
that were used to calculate the forward solution ¥,.. Of course, the
finite clement solution must exclude rigid body motion. This is
accomplished by prescribing displacement boundary conditions.
Note, therefore, that the experimentally measured marker loca-
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tions (X,), at cach pressure configuration, serve two functions: in
the case of five markers, the outer four serve as displacement
boundary conditions in the inverse finite clement solution whereas
the inner one serves as an experimental measurement to which the
inverse finite element solution can be compared in a nonlincar
least squares scnse. Because each marker is located by three co-
ordinate values, cach supplics multiple picces of information for
comparing the theoretically computed and experimentally mea-
sured location. Moreover, marker positions at multiple cquilib-
rium configurations (i.c. pressures) provides the over-determined
cquations needed in least squares cstimations.

In order for the sub-domain problem, as presented, to be well-
poscd, onc must prescribe carefully the boundary conditions. In
other words, specifying more than the required boundary condi-
tions on some part of the boundary, prescribing no boundary con-
ditions, or prescribing fewer than those required might render the
sub-domain problem ill-posed. Of course experimentalists are in-
terested in the minimum number of nodes (i.c., experimental mea-
surements) at which boundary conditions need to be specified to
keep the problem well-posed.

Consider a sub-domain ), consisting of n nodes. This sub-
domain is partitioned into a sct of non-overlapping, non-coplanar
triangles Z; (as in Fig. 1),

O, =7Z,U” ... UZ

”
such that no vertex of onc triangle lies on the edge of another
trangle. Let us assume, too, that the elemental stiffness matrices
can be computed casily as in [13,14]. These local ¢lemental ma-

trices are then assembled to build the global system consisting of

3n cquations and 32 unknowns (with 3 displacements per node).
Let N be the number of free nodes on which the minimization will
be performed in all three directions. Hence, we treat n—=N(=1)
nodes to be fived, that is, where the displacement boundary con-
ditions are prescribed. The global system can thus be written as,

K K g JilQl

K_; K_; ‘[qN’. a QZ
where the block matrices Ky of size 3N X3N, K, of size 3N
X 3L, Kyofsize 3LX3N and K, of size 3L X 3L arc components
of the tangent stiffness matrix: ¢* and q"* are the positions cor-
responding to the nodes that are fived and nor fived respectively;
Q and Q, are the components of the load vector. By prescribing

the boundary conditions, the above system can be (partitioned)
reduced to,

K ¢"'=f (0)

where,

Spherical
Membrane

K=K~ KK, 'K, ™
and
f=Q- KK 'Q;. (8)

Hence a sufficient condition for choosing the number of free nodes
would be to guarantee that the matrices K; and K are non-
singular. It can be shown that this condition is cquivalent 1o sc-
lecting well the strain-energy function w (e.g. convex). Since the
form of w dictates the number of the material parameters, the
singularity condition also restricts the parameter search space.

Illustrative Results

Let us now consider results for three specific classes of matc-
rials: neo-Hookean, Mooney-Rivlin and Fung-exponential. These
material models are not necessarily the best descriptors of mem-
branc behavior under finite strain, they are simply commonly
used.

Forms of Strain-Energy Functions. The 3-D Mooney-Riviin

model is given by,
W=c [(/,-3)+1(I,—3)] 9

where ¢, (having units of stress) and I' (dimensionless) are mate-
rial parameters and /,, 7, are principal invariants of the right
Cauchy-Green tensor C. Note that w=WI/{ where /1 is the thick-
ness of the undeformed membranes: it is also convenient then to let
c=c,l{. When I'=0, (9) becomes a neo-Hookean model.

For membranous soft tissues, however, the Fung-exponential
model is often used. It is,

w=cle?—1) (10)

where Q:cllz‘f1+czlfgl+ 2¢3EE5 and E, . F5 are principal
components of the 2D Green strain tensor E=0.5 (C~1). Here, ¢
is a material parameter having units of force/length and ¢, ¢, and
¢ are dimensionless. The Fung-exponential model can also be
written for the case of 1sotropy (¢ = ¢;) 1n terms of the invariants
of the 2-D Green strain, J, and J,, as

: e Py

(1

w=c(
where ¢, @ and 8 are the material parameters.

Results for Inflated Spheres. Let a sub-domain {2, on the
surface of a thin-walled sphere (domain {}) be demarcated by five
non-coplanar nodes (Fig. 24), cach defined by undeformed coor-
dinates (R,0,<b). This defines four lincar but non-coplanar trian-
gular clements, cach sharing onc common node. Let the sphere be

B Subdomain
Mesh Q.

axisymmetric
mesh

Axisymmetric
Membrane

Fig. 2 Schema showing a possible four element sub-domain on an inflated
sphere (panel A) and an axisymmetrically inflated membrane (panel B). The
latter also shows a three noded element used in the forward problem in an

axisymmetric finite element solution.
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isotropic in its response and inflated by an uniform distension
pressurc P: cach node thus displaces to its new position (r, 8, ¢).

Duc to axisymmetry, the current coordinates and the unde-
formed coordinates will be related as, r=r(R), 6=0, ¢=>. For
this perfectly spherical gcometry, we also know that the principal

1.6
1.4} o ]
o
0009
12 OoooOO
00©°
o
1» OOO <
h0O
0.8 : -
11 112 114 116 118 1.2
2.5 -~
0000°
« oOoo
a 2 o o
00°
N
e
ho
1.5
1.1 112 114 116 1.18 1.2
1.04
1023°0000000000000000000
o
1
11 112 114 116 118 1.2

STRETCH RATIO )

Fig. 3 Results for the inflation of a neo-Hookean spherical
membrane as a function of the in-plane stretch A. The top and
middle panels show the material response for moderate
stretches, less than that associated with a limit point instability
(A=7"5). The bottom panel shows the estimated value of the
neo-Hookean parameter for increasing values of A\, which in-
cludes increasing numbers of equilibrium configurations.

stretch ratios and the curvatures respectively satisfy, Aj=RX;
=r/R and k;=k,=1/r. The out-of-planc stretch ratio is calcu-
lated from material incompressibility Ay=/h/H=1/\%, with A
=r/R. Once the specific form of the strain-energy function w is
known, the principal stress resultants 7' and T, can be derived as
a function of X from (1). Note that the distension pressure P can
also be calculated as, P(N)=2T(X\)/r, where T(A)=T[(N\)
=T5(\).

Figure 3 (top; middle) illustrates the response of a spherical
nco-Hookean membrane (R=2.5 mm) under inflation as a func-
tion of the uniform stretch ratio A e [ 1.1,1.2]. The exact solution
for the stress resultant from (1) and (9), with ['=0, is

F
'I‘(}\):ZIIC,(lfF). (12)

We non-dimensionalize the pressure as P*=PR/¢ and the stress
resultant as 7% =7/c¢. Experimental data were simulated by add-
ing Gaussian noise, with a mean of 0.0 and standard deviation of
0.01 mm (with respect to the size of the sphere), to the deformed
positions. The sub-domain method was then used to estimate the
single material parameter. We show ¢*=¢/¢,, where ¢ is the true
valuc (i.c., valuc used in the forward problem to gencrate the
data). We will denote the truc value of the material parameter by
a solid line in all the graphs from hercon. Figure 3 (bottom) shows
that the sub-domain inverse finite clement estimated parameter
approached the true value with increasing pressurization (i.c.,
stretch).

Given that the increasing stretch in Fig. 3 also corresponds to
increasing the number of cquilibrium configurations—which is
casier for the experimentalist to achicve than increasing the data
collected at cach configuration—the utility of this was evaluated
for each of the three models. The normalized material parameters
for cach model are plotted in Fig. 4, 5 and 6, respectively, for 20
cquilibrium configurations up to a maximum pressure of 160
mmHg. The true values of the dimensionless parameters were
I'=0.89 for the Mooney-Rivlin model and «¢=0.2, g=1.0 for
the Fung-cxponential model. These figures show that the esti-
mated material parameters (for the respective models) approached
the true values as the number of cquilibrium configurations in-
creased, thereby reducing the error associated with the parameter
cstimation.

Perhaps the greatest impediment to robust parameter cstimation
is the presence of experimental noise [1]. Hence, we tested the
performance of our method for all three models using different
levels of experimental  noise  (standard deviation from 3
X102 mm 1o 1X10°* mm, which was added to the forward
solution to generate data for the inverse problem). The results are

1.03 T T T T
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1.02 o

-

o

o

3
T

T T T T T

8

N
T
o

10 12 14 16 18 20

EQUILIBRIUM STATES

Fig. 4 Estimated parameter values versus number of equilibrium configurations for a neo-
Hookean sphere inflated to a stretch of 1.33; noise is 0.01.
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Fig. 5 Similar to Figure 4 except for a Mooney-Riviin sphere
inflated to a stretch of 1.33 (I'=0.89); noise is 0.01.

shown in Fig. 7, 8 and 9, respectively, for cach model. Although
all the results seem to behave as expected (i.c. the relative error in
the estimated material parameters increased markedly with an in-
crease in experimental noisc). note that the crror in parameter
estimation is the least for the neo-Hookean model and greatest for
the Fung-exponential model. One reason for this is the number of
malerial parameters in cach model: | for nco-Hookean (c), 2 for
Mooncy-Rivlin (¢, ") and 3 for Fung-exponential (¢,a,8). As
cxpected, testing the robustness of a multiparameter constitutive
relation is a more severe test for the parameter estimation and
cxperimental errors will play a more influential role in such cases.
The behavior of the error in the parameter estimation for the
Fung-exponential model is also duc to the exponential term,
which is very sensitive to experimental noise, and co-lincarity
between ¢ and the exponential parameters.

Of course, it is desirable to prescribe an acceptable bound for
the size of the sub-domain Q, in comparison to the size of the
entire domain ). For this, we inscribed the sub-domain €} inside
a circle of radius p, which wus defined by the maximum distance
between the center and the other nodes. We performed parameter
estimations for cach model by varying the ratio p/R. It was ob-
served that the tangent-stiffness matrix in (6) becomes singular if
the ratio becomes greater than 0.1, thus confirming that experi-
mental regions of interest must be “small™ 10 ensure goodness of
the approximation afforded by lincar triangular clements. It must
be noted, however, that this bound would depend on the specific
form of the strain-energy function.

General Axisymmetric Inflations.  So far, we have consid-
cred simulated experimental data for the case of the uniform in-
flation of an isotropic spherical membrane. This simple boundary
value problem can be considered as a convenient paich test for
our mecthod. A more stringent test, however, is provided by the
inflation of an axisymmetric membrane having regional variations
in material properties. Such a problem corresponds to that of a
sub-class of idealized saccular aneurysms—with a material sym-
metry that varies linearly from isotropic at the pole to maximally
orthotropic at the base—as studied in [16]. Here, we will simply
add random noise to the computed nodal displacements and use
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Fig. 6 Similar to Figure 4 except for a Fung-exponential
sphere inflated to a stretch of 1.1 («=0.2,8=1.0); noise is 0.01.

these “data’™ as input to our sub-domain inverse finite element
code. Bricfly, in [16], both the undeformed and the deformed con-
figurations were described by gencrator curves that were rotated
about a common axis. Cylindrical coordinates were used to map a
material particle at (R,Z) in the undeformed configuration to
(r.2) in the deformed configuration ( #= © for axisymmetry). The
undeformed (R,Z) and the deformed (r,z) positions were ap-
proximated via isoparametric interpolation [17]. The interpolation
functions were taken o be quadratic in  with the center node at
=0 (Figure 2B).

To generate experimental data from a forward problem, we
chose a single element along the arc length and rotated the nodes
in ¢ to obtain a five noded sub-domain (similar to the one on the
surface of the sphere) in both the undeformed and the deformed
configurations (Fig. 2B8). Noise was then added randomly to the
displacements of cach of the five nodes defining the sub-domain
and the resulting locations served as experimental data (X,). We
also computed the finite element solution (from our code) for the
same set of undeformed coordinates and the pressure configura-
tion with displacement boundary conditions specified at the outer
four nodes of the five noded sub-domain, again keeping the com-
mon center node as a free node. The initial guess of the values of
material parameters were chosen in such a way that convergence
is guaranteed in the solution. The solution hence computed served
as the calculated (X)) data that were compared with the experi-
mental data (X,) in a least-square scnse.

For purposes of illustration, let the total number of elements
used in [16] be 24 and the material model be Fung-exponential.
The simulation was performed for 20 increasing cquilibrium con-
figurations up to a maximum pressure of 160 mmHg. Morcover,
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Fig. 7 Estimated parameter values as a function of increasing experimental noise for a neo-
Hookean sphere inflated to a stretch of 1.33 via 10 equilibrium configurations.

consider a membrane exhibiting orthotropy. The Fung-cxponential From [3]. the true values of the material parameters were ¢
strain-cnergy function can be expressed, using (10), with =0.8769 N/m, ¢,=4.50 and c;=1.18. We first estimated the val-
2 > ucs of the material parameters using our inverse finite clement

@=afit eyt eyt e =2e)/5 (13) " method over the 4 clement sub-domain corresponding to clement

where Jy and J, are invariants of the Green strain. In order 1o 10 in the forward problem. From (14), the value of ¢, is calcu-
allow regional variations in anisotropy, the ratio ¢, /¢, was al-
lowed to vary from clement to clement as,

¢ (le—1)" 1.5 v
—=]~(l-M)— 4
¢ ( )(nc*l)” SR
where /e is the local clement, ne is the total number of elements,
p is the order and M =c,/¢ | . the ratio at the base of the . 0 00 o O
inllated membrane. o 1
1.1 - 0.5
1 102 107"
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Fig. 9 Similar to Figure 7 except for a Fung-exponential

Fig. 8 Similar to Figure 7 except for a Mooney-Riviin sphere  sphere inflated to a stretch of 1.05 via 10 equilibrium configu-
inflated to a stretch of 1.33 via 10 equilibrium configurations. rations.
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Fig. 10 Estimated parameter values for an orthotropic Fung-exponential material over ele-
ment 10 (left panels) and over element 17 (right panels). See text for details.

lated over the local element 10 (with p=3 and M =4.25) 10 bhe
5.37. The left panels in Fig. 10 (left pancls) shows how well cach
of the material parameters ¢, ¢, ¢; and ¢5 are estimated by our
scheme as the number of cquilibrium configurations increases.

In order to demonstrate the performance of our method with
regional vartations in material parameters over the entire domain,
we repeated our simulations on a 4 element sub-domain formed
by clement 17 in the forward problem. The true values of ¢, ¢,
and ¢y are the same as before while the value of ¢, can be calcu-
lated from (14) to be 9.42. Figure 10 (right panels) once again
illustrates how closely the values of the material parameters are
estimated to the true values with increasing number of equilibrium
configurations. For completeness, we also considered a material
exhibiting isotropy (¢, =c5) which can be implemented by choos-
ing M=1 in (14). We used ¢=0.8769 N/m, ¢, =¢,=11.82 and
c3=1.18 as the true values to simulate this isotropic behavior.
Once again, there was an excellent recovery of the material pa-
rameters (not shown).

Conclusion

The numerical results presented in this paper suggest that one
can cmploy inverse finite element methods over sub-domains
rather than the entire domain to determine membrane properties
when the associated boundary value problem is complex. With

this technique one can now quantify the mechanical behavior of

complex soft-tissues like intracranial saccular aneurysms and also
design the requisite experiments. This technique allows character-
ization of the regional variations in these propertics.
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