
Journal of Biomechanics 34 (2001) 607–612

On the potentially protective role of contact constraints
on saccular aneurysms

P. Seshaiyer1, J.D. Humphrey*

Biomedical Engineering Program, 233 Zachry Engineering Center, Texas A&M University, College Station, TX 77843-3120, USA

Accepted 13 December 2000

Abstract

Most intracranial saccular aneurysms remain asymptomatic until rupture. Yet, some unruptured lesions present with various
symptoms, often related to the compression of a nerve or other intracranial tissue. An obvious question, therefore, is whether or not
symptomatic unruptured lesions necessarily have a greater rupture-potential than asymptomatic ones. In this paper, we show

numerically that contact constraints can have a protective effect on certain lesions. Specifically, finite element analyses of stress fields
in model axisymmetric lesions, with and without the presence of a rigid contacting obstacle at the fundus, reveal that with the
exception of near point loads, the constraint decreases the stresses near the fundus. Given that it is well accepted that rupture occurs

when wall stress exceeds wall strength, these findings suggest that the rupture-potential will be lower in at least one sub-class of
constrained versus comparable unconstrained lesions. Because of the myriad of sizes, shapes, and compositions of saccular
aneurysms, however, there is a need to examine this important issue further, hopefully based on an increased awareness for clinical

data on lesion–tissue interactions. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent findings suggest that the rate of rupture of
intracranial saccular aneurysms may well be even less
than previously thought (Wiebers et al., 1998). None-
theless, ruptured aneurysms remain as the leading cause
of spontaneous subarachnoid hemorrhage and thereby
are responsible for significant morbidity and mortality.
The best way to combat this devastating sequel is, of
course, via early detection and appropriate treatment.
Unfortunately, most saccular aneurysms are asympto-
matic prior to rupture; those unruptured lesions that
present symptoms often do so by pressing on adjacent
structures (Sekhar and Heros, 1981). An important
question that has received little attention is whether the
rupture-potential of symptomatic lesions is different
from that of comparably sized asymptomatic lesions.
This is obviously a very difficult question, one that is

complicated by the myriad of sizes, shapes, and
compositions exhibited by saccular aneurysms. Never-
theless, there is a need to begin a focused dialogue.

Symptomatic unruptured aneurysms are often asso-
ciated with the compression of a nerve (Wiebers et al.,
1998), which likely deforms the aneurysm. One way to
model this interaction would be to solve the coupled
large deformation problem for the nerve and aneurysm.
It is prudent, however, to first explore more general
upper and lower bound solutions } for example, the
effects of an infinitely stiff (i.e., rigid) or an infinitely
compliant (i.e., non-existent) contacting structure on the
stress distribution in an aneurysm. The former can be
modeled as a ‘rigid contact constraint’ on the deforma-
tion of the lesion. If the associated results reveal that the
effect of this constraint is potentially detrimental, then
one must consider the coupled large-deformation pro-
blem. Note, however, that a constraint can be viewed, in
part, as an external reactive force that serves to balance
part of the load on the lesion due to the distension
pressure. If the effect of such constraints are found to
be protective, therefore, then there is less motivation
to consider the coupled problem, whose solution would
be expected to be within the upper and lower bounds.
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Based on a few preliminary results, the purpose of this
work was to test the hypothesis that the action of a sub-
class of rigid contact constraints on axisymmetric
saccular aneurysms is often protective. For simplicity,
a fixed planar obstacle is assumed to contact the lesion
at its fundus, which thereby preserves the axisymmetry.
This is clearly a special case, but one that allows us to
examine the potential role of a constraint for multiple
lesions defined by different neck-to-height ratios, differ-
ent distributions of material properties, and constraints
of different lengths.

2. Methods

Due to their negligible bending stiffness, non-compli-
cated saccular aneurysms (i.e., without atherosclerosis,
thrombus, etc.) can be modeled mechanically as
membranes (Kyriacou and Humphrey, 1996). Hence,
consider non-complicated axisymmetric lesions wherein
material points are mapped from the original config-
uration ðR; ZÞ to a deformed configuration ðr; zÞ due to
a uniform quasi-static distension pressure P (Fig. 1).
Moreover, let the undeformed domain be discretized by
one-dimensional (1-D) quadratic finite elements. The
associated principal stress resultants are (Humphrey
et al., 1992)
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where la are the principal stretches, w is a pseudostrain–
energy function defined per unit undeformed area, and
Ea ¼ 0:5ðl2

a � 1Þ are the principal Green strains (with
a ¼ 1 denoting the meridional and a ¼ 2 denoting the
circumferential direction). Stress–strain data on human
aneurysms have been shown to be well described by a

Fung-type pseudostrain-energy function w of the form
(Kyriacou and Humphrey, 1996)

w ¼ cðeQ � 1Þ;Q ¼ c1E
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where c is a material parameter having units of force per
length and c1; c2, and c3 are non-dimensional material
parameters. Note: if the undeformed arc length
S 2 ½0;L�, where S ¼ 0 corresponds to the fundus (or
pole) and S ¼ L corresponds to the neck, then c1 ¼ c2

for all S for an isotropic behavior whereas c2=c151 (or
> 1) if the material is stiffer in the meridional (or
circumferential) direction at any S. Following Ryan
and Humphrey (1999), we consider regional variations
in material symmetries that are ‘preferred’, that is
variations that tend to homogenize the stress distribu-
tion. This is accomplished within the finite element
formulation by letting
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where ðc2=c1Þmax is a ratio of material parameters at
S ¼ L, N is the total number of elements, i is the finite
element number (i ¼ 1; . . . ;NÞ, and p specifies how (e.g.
linearly or non-linearly) the symmetry varies from
fundus to neck. Ryan and Humphrey showed, for
example, that lesions that are initally broader than tall
(e.g., a large neck-to-height ratio) tend to prefer
circumferential stiffening from the fundus to the neck
(i.e. ðc2=c1Þmax > 1).

There is an extensive literature on finite element
analyses of finitely deformed non-linear membranes (see
Jenkins and Leonard, 1991 for a review). For example,
the virtual work formulation requires thatZ
O0

dw dA ¼
Z
O
Pn:dx da; ð4Þ

where dA and da are the original and current surface
areas, respectively, n is an outward unit normal to da,
and dx is a virtual ‘displacement’. It can be shown that
(4) can be written as
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where r and z are approximated elementwise via
isoparametric interpolation as, r ¼ uT

e / and z ¼ uT
e w,

where uT
e ¼ ½r1; z1; r2; z2; r3; z3� and / and w are standard

quadratic shape functions. Note, too, that we enforced a
zero-displacement boundary condition at the neck and a
vertical-only displacement condition at the fundus,
which preserves the axisymmetry.

We used a two-point Gaussian quadrature, with the
Gauss points located at x1 ¼ �

ffiffiffi
3

p
=3 and x2 ¼

ffiffiffi
3

p
=3

with equal weights W1 ¼ W2 ¼ 1, to evaluate numeri-
cally the above integrals. Due to geometric and material

Fig. 1. Schema of an axisymmetric aneurysm constrained by a rigid

planar obstacle at the fundus, with the generator curve for the

undeformed geometry discretized using quadratic (three noded)

elements with x ¼ ð�1; 0; 1Þ at ðr; zÞ ¼ ðr1; z1; r2; z2; r3; z3Þ. Also shown

is the deformed arc length ds and the uniform distension pressure P.
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non-linearities, the resulting system of algebraic equa-
tions was non-linear, and thus solved using a Newton–
Raphson method. Local stress and strains were then
determined at the Gauss points in postprocessing
(Shah et al., 1997); the principal Cauchy stresses were
computed as ta ¼ Ta=h, where the deformed thickness
h ¼ H=l1l2 from incompressibility. Convergence was
shown by comparing results for 40, 100, and 400
elements.

There are several ways to model finite deformations of
a membrane that is constrained by a fixed obstacle. One
way is to include the contact condition in the weak form
via a penalty method (Endo et al., 1984). Alternatively,
Feng and Huang (1975) solve the problem by introdu-
cing a ‘slack variable’ and deriving an analytic expres-
sion for the total potential energy. Yet another way is to
exploit the fact that when a finite element node comes
into, and stays in, contact with a fixed obstacle, it loses a
degree(s) of freedom. For example, instead of satisfying
two separate equilibrium equations, this node would
satisfy only one of the equilibrium equations along with
a constraint equation for the node (Charrier et al.,
1987). This is equivalent to recording the number of
finite element nodes that come into contact (incremen-
tally) with the constraint at each pressure level and then
suitably modifying the boundary conditions (e.g., one
can specify that the vertical displacement of a node that
comes into contact with a horizontal constraint remains
equal to the position of the constraint). Because we
consider frictionless boundary conditions, we allow the
nodes to slide along the length of the horizontal obstacle
(Fig. 1). The original boundary value problem was thus
solved using an updated set of boundary conditions.

Specifically, following Kyriacou and Humphrey
(1996) and Shah et al. (1997), we considered an idealized
sub-class of model lesions having different initial
geometries (i.e., lesions with different neck-to-height
ratios with the undeformed geometry being a truncated
sphere or ellipse), but otherwise the same initial volume
(0.0398 ml) and uniform undeformed wall thickness
(H ¼ 27:8 mm). For isotropic behavior, we let
c1 ¼ c2 ¼ 11:82; c ¼ 0:08769 Nm�1, and c3 ¼ 1:18 at
all S for all geometries (from Kyriacou and Humphrey,
1996); for anisotropic (preferred) behavior, we used the
values of ðc2=c1Þmax and p found in Table 1 in Ryan and
Humphrey (1999). Furthermore, we considered two
different equilibrium pressures (80 and 160 mmHg) for
each of the six classes of lesions (i.e., the three
geometries and two distributions of material properties),
and evaluated in each case the effects of seven different
contact constraints as follows. First, we set the obstacle
far enough away so that no part of the deformed lesion
would contact it (lower bound solution). Next, we
moved the obstacle to about 90% of the maximum
displacement achieved by the center node of the
unconstrained lesion under a distension pressure of

160 mmHg. This guarantees that at least some part of
the lesion will contact the obstacle. Similarly, we then
moved the obstacle to about 30% of the maximum
displacement of the center node. In each case, we
considered three different obstacle lengths: one greater
than, one equal to 25% of, and one equal to 3.75% of
the radius at the neck.

3. Results

Multiaxial stresses were decreased in all lesions due to
the application of the medium and long constraints. For
example, consider the case of an anisotropic lesion
having an undeformed neck-to-height ratio greater
than 1 (Fig. 2). This geometry can have a large radius
of curvature and thus large stresses at the pole (Shah et
al., 1997) and generally represents a severe case. The

Fig. 2. Finite element simulation of an anisotropic lesion defined by a

neck-to-height ratio greater than 1.0 (
 4 : 1) coming into contact with

a 1 mm long obstacle (denoted by the - in panel A). Undeformed and

deformed configurations are given in panels A–C as dotted and solid

curves, respectively. Associated Cauchy stresses are shown in panels

D–F, respectively, in both the meridional (solid) and circumferential

(dotted) directions as a function of a non-dimensional undeformed arc

length S=L, with the fundus at S ¼ 0. The ‘pairs’ of results are for

P=80 and 160 mmHg. Results are for the constraint placed at 90 %

(panel B) and 30% (panel C) of the maximum displacement achieved

by the center node in the unconstrained case. Note the protective effect

of the constraint with regard to wall stress.
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undeformed generator curves (dotted curves in panels
A–C) reveal the prescribed geometry, one half of an
ellipse. These panels also show how the initally
undeformed geometry was deformed (see solid curves)
under the respective distension pressure and correspond-
ing boundary conditions (e.g., 1 mm long constraint).
The results are for two distension pressures, 80 and
160 mmHg. The corresponding distributions of the
principal Cauchy stresses are shown in panels D–F:
meridional (solid curve) and circumferential (dotted
curve). Results in panel D are the same as in Ryan and
Humphrey (1999). Comparing results in panels E and F
to those in D reveal that this constraint is protective,
that is the multiaxial stresses were either reduced or
unchanged relative to the unconstrained lesion. Note
also, that the effects are localized near the obstacle.
Given that lesions with preferred symmetries generally
have lower stresses than geometrically comparable ones
that are isotropic (Ryan and Humphrey, 1999), and
because we seek upper bound solutions, we then
considered isotropic lesions. Results for the same
geometry, same constraint, same pressures but isotropic
behavior were similar to those of Fig. 2 though with
generally higher stresses (Fig. 3). Next, consider a lesion
with a small neck-to-height ratio and isotropic behavior.
As noted above, both the medium (0.5 mm long; not

shown) and long (4 mm; Fig. 4) obstacle again reduced
the stresses relative to those in the comparable
unconstrained lesions. Indeed, similar results were found
for lesions having equal neck-to-height ratios (not
shown). Albeit perhaps physiologically unrealistic, next
consider the effects of very short obstacles (3.75% of the
neck), which should provide further upper bound
information.

As expected, in all cases significant ‘indentation’ by
short obstacles resulted in marked increases in the
stresses near the fundus. For example, consider the case
of a lesion with an equal neck-to-height ratio, short
obstacle (0.1 mm long), and isotropic behavior (Fig. 5).
As it can be seen in panel F, the stresses increased by
more than 100% when the ‘indentation’ was 30% of the
maximum displacement achieved by the fundus of the
unconstrained lesion at 160 mmHg. This potentially
detrimental effect is akin to the application a point load,
hence the significant stress concentration near the
symmetry axis.

4. Discussion

The primary clinical predictor of the rupture-potential
of saccular aneurysms continues to be their maximum

Fig. 3. Similar to Fig. 2 but for an isotropic lesion coming into contact

with a medium length obstacle.

Fig. 4. Similar to Fig. 2 but for an isotropic lesion defined by a neck-

to-height ratio of 
 0:4 subjected to a long obstacle (4 mm).
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dimension despite significant controversy over the
‘critical size’ and recent work that reveals the impor-
tance of the local curvature rather than size alone (Shah
et. al., 1997). Moreover, there has yet to be an analysis
of additional complexities such as the presence of
atherosclerotic patches, intraluminal thrombi, the effects
of prior bleeds, or contact with nearby tissues, including
nerves. It is well known, for example, that some patients
present with cranial nerve deficits due to the pressing of
an aneurysm (Wiebers et. al., 1998). We hypothesized
that a simple class of contact constraints on saccular
aneurysms could be protective (e.g., the contacting
structure could carry some of the load acting on the
aneurysm). Because every saccular aneurysm is biome-
chanically distinct, however, it is unreasonable to
address this hypothesis with a lesion-specific analysis.
Rather, we tested our hypothesis for sub-classes of
axisymmetric lesions, defined by varying neck-to-height
ratios and varying material properties, which contact a
fixed planar obstacle at the fundus. Such analyses serve
as a beginning to help guide retrospective and prospec-
tive statistical analyses of actual lesions, which is
necessary to improve our overall understanding of the
natural history of saccular aneurysms.

The finite element method is a convenient tool for
performing parametric studies via numerical simulations.
Such analyses have, nonetheless, appeared only recently.
For example, Kyriacou and Humphrey (1996) were the
first to investigate the non-linear behavior of various
idealized axisymmetric models of saccular aneurysms.
The present results are likewise the first to address the
interaction of model aneurysms with an obstacle; it is
unfortunate that there are no results in the literature to
which the present ones can be compared. Despite
providing some insight, we note that this study is limited.
For example, we assumed that the obstacle contacts the
lesion only at its fundus, hence preserving the axisym-
metry. More general, and complex, non-axisymmetric
cases will need to be studied. Also, we assumed a
frictionless contact with a rigid obstacle whereby the
inflation is constrained only in the direction normal to the
constraint. On the other hand, one could consider no-slip
contact conditions whereby the lesion cannot experience
further displacements at the points of contact, or one
could model the interaction with a non-linearly elastic
obstacle. For aneurysms, however, it seems reasonable to
consider a frictionless contact given the presence of
abundant extravascular fluid which could serve as a mild
lubricant as well as the pulsatility of the loadings which
would tend to allow intermittent slipping. Certainly
nerves and most other intracranial structures are
deformable, but the rigid assumption is thought to
provide an upper bound solution. Although what we
have considered in this paper is only a special case, it does
suggest a potentially protective role of contact constraints
except when the obstacle acts nearly as a point load.

Specifically, our results first suggest that when a lesion
comes in contact with medium or long obstacles the
values of meridional and circumferential stresses actu-
ally decrease (panels E and F in Figs. 2–4) when
compared to the control case (panel D of each figure).
Assuming dependence of rupture-potential on the
multiaxial state of stress, suggests that there is less
chance of rupture due to the presence of such a
constraint. Conversely, when a lesion contacts a short
obstacle, it is possible that the stresses increase near the
contact, which could be detrimental and could con-
tribute to rupture (Fig. 5). Although very short con-
straints may be physiologically unlikely, such cases
should be considered to ensure relatively complete
investigation. Indeed the short constraint makes the
computational problem more involved, for to specify the
constraint boundary conditions, one not only needs to
calculate the number of nodes that would cross the
constraint as before, but also count (among these) the
number of nodes whose displacement in the horizontal
direction is less than the length of the constraint. This
number gives the new set of boundary conditions that
needs to be appended along with the old boundary
conditions while solving the overall problem.

Fig. 5. Similar to Fig. 2 but for an isotropic lesion defined by a neck-

to-height ratio of 1.0 subjected to a short obstacle (0.1 mm). Note the

marked increase in stresses near the fundus, similar to that expected of

a point load.
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Finally, it is important to emphasize that aneurysms
are not inert structures subjected to constant loads and
boundary conditions. As noted in Ryan and Humphrey
(1999) and Canham et al. (1999), it appears that these
lesions may enlarge via a process of stress-mediated
growth and remodeling. If so, the altered stress
distribution due to a constraint would, in turn, affect
the properties and thus the response. We did not model
this process, though it merits attention. In conclusion,
we emphasize that the present results strictly apply only
to specific types of contact and for idealized axisym-
metric aneurysms. Nonetheless, in most cases studied,
the rupture-potential of the ‘symptomatic lesions’ would
likely be less than that of comparable asymptomatic
ones. There is a need, therefore, to consider contact
constraints in interventional decisions.
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