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SUMMARY

Direct numerical simulation of the non-linear equations, governing a fluid–structure system, relies heavily
on the properties of the coupled system and the corresponding iterative solver. The purpose of this paper is
to introduce a flexible and robust multilevel finite element algorithm that can be used to study the behavior
of a fully coupled fluid–structure system. The method relies on the domain decomposition characteristics
of the multigrid Vanka solvers, which decompose the complex global domain into the finite element local
sub-domains and then compute the global solution iteratively. This particular methodology allows us to
solve easily this coupled system over a fluid–solid domain which consists of a set of subdomains from
different mesh levels with conforming or non-conforming finite element method approximations. The
multigrid projection and restriction operators are used to impose the matching between the extended fluid
and solid velocity field. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The direct numerical simulation of a fluid–structure system involves the coupled solution of the
Navier–Stokes system and the structural mechanical equations. Let the computational domain
�⊂ �2 be the union of the fluid subdomain �f, where the unsteady Navier–Stokes equations for
incompressible flow are solved, and the solid subdomain �s, where the linear elasticity equations
are considered. Let us assume that any boundaries can change in time. In this regard, let the
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Figure 1. Domain decomposition of �=�f ∪ �s in fluid and solid subdomains (on the left)
and non-conforming decomposition � =�1 ∪ �2 (on the right).

subdomains �f and �s be time dependent and constrained by �̄f(t)∪ �̄s(t) = �̄(t). Figure 1 on the
left illustrates the computational domain � with fluid and solid boundary �f and �s, respectively.
We denote the boundary of � by � and the interior boundary between �f and �s by �sf.

The fluid velocity, the fluid pressure and the solid displacement (u, p,w) ∈H1(�f) × L2(�f) ×
H1(�s) satisfy the weak variational form of the unsteady fully coupled fluid–structure problem
given by∫

�f

�f

(
�u
�t

+ (u · ∇)u
)

· v dx +
∫

�f

(2�fD(u) : D(v) − p∇ · v) dx +
∫

�sf

k1 · v dx= 0 (1)

∫
�f

r∇ · u dx= 0 (2)

∫
�s

�s
�2w
�t2

v dx +
∫

�s

�∇ · w∇ · v + �(D(w) : D(v)) dx −
∫

�sf

k2 · v dx= 0 (3)

∫
�sf

(
u − �w

�t

)
· s dx= 0 (4)

for all (v, r, s) ∈H1
�d

(�) × L2(�f) ×H−1/2(�sf), with Dirichlet boundary conditions over �d ⊂ �
and zero Neumann boundary conditions over �f∩(�\�d) and �s∩(�\�d). The physical constants
�f and �f are the density and the viscosity of the fluid and Di j (u) = (�ui/�x j + �u j/�xi )/2 is the
deformation tensor. Also, � = E�/(1 + �)(1 − 2�) and � = E/1 + � with the density �s, Young’s
modulus E and the Poisson ratio � for the solid material. Hk

�s
(�) is the Sobolev space of order k

with vanishing functions over �s ⊂� [1]. We denote L2(�) = H0(�) and use bold face notation
for vector-valued functions and spaces. In this coupled problem formulation, �1 ∈H−1/2(�sf) is a
Lagrange multiplier that corresponds to the force exerted by the fluid region on the solid domain
on �sf and similarly �2 ∈H−1/2(�sf) corresponds to the force exerted by the solid region on the
fluid domain on �sf. Equation (4) represents the velocity/displacement continuity constraint on
�sf, while the force balance is given by

〈k1 − k2, s〉�sf = 0 ∀s∈H1/2(�sf) (5)

The direct numerical simulation of this highly non-linear system, governing even the most simplified
fluid–structure interaction, depends on the convergence of iterative solvers which in turn relies on
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the characteristics of the coupled system. Domain decomposition techniques with non-matching
grids have become increasingly popular in this regard for obtaining fast and accurate solutions of
problems involving coupled processes [2]. In the last few years, domain decomposition methods
have also been developed in conjunction with multigrid techniques, [3–5]. The purpose of this
paper is to introduce a flexible algorithm that can be used to solve the coupled system over both
the liquid and solid domains. A multilevel domain decomposition algorithm with non-matching
grid is used for solving the equation system. The solver allows to discretize with fine level meshes
the regions of interest and with coarser level meshes the other parts of the domain.

2. SYSTEM DISCRETIZATION

Let the discrete domain �h be partitioned into m non-overlapping sub-domains {�i
h}mi=1 such

that each interface �i j
h = ��i

h ∩ �� j
h (i �= j) is non-empty. By starting at the multigrid coarse level

l = 0, we introduce a finite element discretization over each subdomain �i
h with characteristic mesh

parameter h. Based on a simple element midpoint refinement, different multigrid level meshes can
be constructed to reach the top finest multigrid level l = n [6].

Let Xl
h(�h) ⊂H1(�h), Slh(�h) ⊂ L2(�h) and Rl

h(�h) =Xl
h|�h ⊂H1/2(�h) be the approximation

spaces. At each level mesh l we chose the families of finite element spaces to satisfy appropriate
stability and approximation properties that will allow us to build a regular conforming approxima-
tion [1]. We indicate with Plh(�) ⊂H−1/2(�) the dual space of Rl

h(�). Over each multigrid level
we have constructed a standard finite element mesh with the same number of nodes on both sides
of the element interfaces, but in every subdomain �i

h the equation system (1)–(5) can be solved
over a different level mesh generating a solution at different levels over different subdomains with
different number of nodes on both sides of the element interface.

Let �i,l
h be the subdomain i where the solution will be computed at the multigrid level l. In

the rest of the paper we denote with the apex i, l the solution over the corresponding subdomains,
i.e. for the velocity zi,l , and with no apex the extended solution over �h, i.e. z for the extended
velocity. We will refer to z as the global velocity vector defined as z= u over �f, z= ẇ over �s

and z= ẇ=u in �sf. Note that zi,l is computed over each �i,l
h at the corresponding level l, but

the extended velocity z on the top level n is defined over all �h in a standard and regular way.
By using the multigrid interpolation operator In

l the extended velocity z is therefore defined by
z(x, t) =In

l z
i,l(x, t), for all x∈ �i

h. We can easily generalize the notations to all the other field
variables.

In order to account for the changing nature of the fluid and solid subdomains, we wish to define
a dynamic mesh for the space discretization. However, to avoid extreme distortion, we choose to
move the mesh independently of the fluid velocity in the interior of �f. Such a scheme, called
arbitrary Lagrangian–Eulerian formulation, is commonly applied when studying fluid–structure
interaction [7]. Inside the solid region each point is moving according to the time derivative of
the displacement w. In the fluid domain �f, we define an independent grid velocity ug to be any
smooth vector field satisfying the following boundary conditions ug = �w/�t on �sf and ug · n̂ = 0
on �f. If the grid velocity is known as a function of time, the trajectory inside the domain �f of
a generic point of coordinate x(t) can be traced and its Lagrangian derivative of the new velocity
field evaluated along the point trajectory. The Navier–Stokes equations in (1) can be considered
in the Lagrangian form, taking into account that the fluid domain follows the characteristic line
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generated by the independent grid velocity ug, and the Lagrangian derivative can be discretized
in time using a simple first-order integration scheme with time step �t . In the rest of the paper
we denote with zt the explicit velocity evaluated at (t, x(t)) and zt+�t the implicit velocity of the
same point, now in x(t + �t), evaluated in the new domain configuration �f(t + �t) and at the
time t +�t . With this notation the elasticity equation is discretized in time by a standard Newmark
integration scheme and the velocity ẇ, the acceleration ẅ of the displacement w are introduced
by standard first-order expansion [7, 8].

Following the above proposed numerical schemes, system (1)–(5) can be discretized in time
and space. Let J i be the set of the j-indices of all the neighboring regions � j surrounding the
subdomain �i . Let (zi,l , pi,l , si j,l) ∈Xl

h(�
i ) × Slh(�

i
f) ×Plh(�

i j ) be the global velocity, the pressure
and the stress vector, over the corresponding subdomains. The variable state (zi,l , pi,l , si j,l) satisfies
the discrete system

∫
�f

�f

(
zi,lt+�t

�t
+ ((zi,lt+�t − ui,lg ) · ∇)zi,lt+�t

)
· vi,l dx +

∫
�s

�sa1z
i,l
t+�t · vi,l dx

+
∫

�f

(2�fD(zi,lt+�t ) : D(vi,l) − pi,lt+�t∇ · vi,l) dx +
∫

�i j
h

si j,l · vi,l dx

+
∫

�s

a2(�∇ · zi,lt+�t∇ · vi,l + �D(zi,lt+�t ) : D(vi,l)) dx (6)

=
∫

�s

(�∇ · (a4ẇ
i,l
t − wi,l

t + a5ẅ
i,l
t )∇ · vi,l + �D(a4ẇ

i,l
t + a5ẅ

i,l
t − wi,l

t ) : D(vi,l)) dx

+
∫

�f

�f
ui,lt
�t

· vi,l dx +
∫

�s

�s(a1ẇ
i,l
t + a3ẅ

i,l
t ) · vi,l dx ∀vi,l ∈Xl

h(�
i )

∫
�f

r i,lt+�t∇ · zi,lt+�t dx= 0 ∀r i,l ∈ Slh(�
i
f) (7)

∫
�i j
h

(zi,l − z j,k) · si j,l dx= 0 ∀si j,lf ∈Plh(�
i j
h ) (8)

for all j ∈ J i and i = 1, 2, . . . ,m. The appropriate exterior boundary conditions on �f and �s com-
plete the formulation of problem (6)–(8). The coefficients a1 = 1/��t , a2 = �t�/2�, a3 = −� − 1/�,
a4 =−�t (1 − �/2�), a5 =−�t2/2(1 − �/�) are obtained from the standard Newmark integration
scheme of the first order [7, 8]. All the terms on the right-hand side of (6), wt , ẇt and ẅt , are
evaluated in the previous time step. Once Equation (1) is solved for żt+�t , pi,l and si j,l , the
displacement wt+�t and its acceleration ẅt+�t can be computed by using the standard Newmark
expansions. On the shared boundaries �i j

h the stress vectors, si j,l and s j i,k , belong to the two
different spaces Plh and Pk

h. The stress vectors are the same in weak sense and can be computed
easily among the different level meshes since the boundary vector spaces are nested, with Rl

h ⊆Rk
h

(l�k). It is worth noticing that the constraints on the fluid–structure interface are implicitly satisfied
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by Equation (6). No extra equations are necessary in order to ensure the velocity/displacement
continuity and force balance on the common interface.

The entire system is solved using a fully coupled iterative multigrid solver with a Vanka-type
smoother [6, 9]. Multigrid solvers for coupled velocity/pressure system compute simultaneously
the solution for both the pressure and the velocity field, and they are known to be one of the best
class of solvers for laminar Navier–Stokes equations and more in general for elliptic problems
(see [9]). An iterative coupled solution for the linearized discretized system requires the solution
of a large number of sparse problems. In order to optimally solve the equation system (6)–(8),
involving the unknown stress vector si j , we use this block Gauss–Seidel method, where each
block consists of a small number of degrees of freedom. The characteristic feature of this type of
smoother is that in each smoothing step a large number of small linear systems of equations have
to be solved. Each block of equations corresponds to all the degrees of freedom that are connected
to few elements.

3. NUMERICAL TESTS

In this section we test the fluid–structure non-conforming formulation [10]. As shown in Figure 1
on the left, let the rectangular region �=[0.02m] × [0.01m] be the computational domain with
boundary �. The solid region �s consists of a beam, clamped at the point (0.005m, 0), with
length equal to 0.006m and thickness equal to 0.0005m. The head of the beam has been smoothed
with a semicircle centered in 0.005, 0.00575m and radius r = 0.00025m. The fluid and the solid
boundaries, �f and �s, are the contours of the two shaded regions and their intersection is labeled
by �sf. On the right and left sides, the channel outflow and inflow boundary conditions, with
parabolic profile (max vel= 0.05m/s), are considered. The initial conditions for the velocity field
are set to zero.

The fluid and the solid properties are chosen in order to produce large deformations of the beam
and to test the reliability of the solver in challenging situations. The fluid density �f and viscosity
�f are equal to 1000 kg/m3 and 0.001 kg/ms, respectively. The solid density �s, Young’s module
E and the Poisson ratio � are 1000 kg/m3, 50 000 Pa and 0.48, respectively.
The time step �T = 0.001 s has been used for a total of 1000 time steps (1 s). Only the four

level meshes, l0, l1, l2 and l3, are considered. The number of unknowns (global velocity field and
pressure) involved in the computation at the mesh level l3 is quite large, approximatively 70 000.
By using different levels over different subregions more efficient computations can be obtained. As
shown in Figure 1 on the right, the domain � is split into two subdomains �1, �2, and two different
non-conforming meshes are built. In the subdomain �1 the mesh level l3 is always used. In order
to reduce the solution unknowns over �2 low mesh levels are considered. We label with P1, P2 the
case where the levels l2, l1 are used. Approximatively 45 000 and 40 000 are the new numbers of
unknowns for the new configurations P1 and P2. The computational CPU time and the allocation
memory expenses are proportionally reduced. In Figure 2 (on the left), the non-conforming case
P2 with the levels l3 and l1 is reported over the domain decomposition �1 and �2. In Figure 2
on the right, the beam extrema oscillation is compared for the three conforming meshes l3, l2 and
l1, and for the two non-conforming meshes P1 and P2. The results show clear advantages of the
non-conforming discretizations over the conforming ones. Obviously, the path obtained with the
finest mesh l3 can be considered the most accurate. The l1 path is mostly below the l3, showing
too much stiffness in the beam response. The beam oscillation obtained with the non-conforming
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Figure 2. Non-conforming mesh configurations P2 (left) and beam extrema oscillations.

configuration P1 almost overlaps the result obtained with the conforming mesh l3. There are very
small differences between the path in l3 and the path in P2. These results clearly indicate how
one can use the non-conforming multilevel partitioning to preserve the same accuracy in regions
of interest. It should be noticed that the comparisons have been tested on a beam displacement
oscillation, which is indirectly related to the multilevel domain partitioning. The sensitivity of the
beam response to the different level meshes and the different domain decompositions points out
again to the fact that the system is fully coupled.

4. CONCLUSION

New discretizations both in time and space have been presented for the coupled non-linear FSI
problem. In particular it is possible to rewrite and solve the coupled system for both the fluid
and structure equations in terms of the global velocity and pressure. A non-conforming multilevel
finite element method discretization embedded in a geometric multigrid algorithm has been used
together with a Vanka smoother in order to solve the coupled system. Preliminary results indicate
the stability of the algorithm and show that the use of the non-conforming multilevel partitioning
preserves the same accuracy in regions of interest, reducing at the same time the computational
CPU time and memory allocation.
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