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SUMMARY

We consider the incompressible Stokes equations in primal velocity–pressure variables and present the
mortar �nite element formulation for this problem. The local approximation within each subdomain is
designed using divergence stable hp-mixed �nite elements. The velocity is computed in a mortared space
while the pressure is not subjected to any constraints across the interfaces. Our computational results
show that the mortar �nite element method for the Stokes problem satis�es similar rates of convergence
as the conforming �nite element method, in the presence of various h, p and hp discretizations (including
the case of exponential hp convergence over geometric meshes). We also present the numerical results
for the Lagrange multiplier when the method is implemented as a mixed method. Copyright ? 2002
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last few years, there has been a signi�cant development in non-overlapping domain
decomposition techniques for rigourously coupling di�erent physical processes, that are
modelled independently over di�erent subdomains. During this coupling (assembly) however,
it is often too cumbersome, or even infeasible to co-ordinate the individually modelled sub-
components so that they conform at the interfaces. Using conforming techniques, one must
perform transition modelling to co-ordinate the meshes, which can become quite complex,
tedious and expensive in such cases because the �nite element nodes of each component at
the common interface are not, in general, coincident. This motivates the necessity for non-
conforming methods at the sub-domain level.
The mortar �nite element method introduced by Bernardi et al. in Reference [1] is an

example of a non-conforming technique which can be used to de-compose and re-compose
a domain into subdomains without requiring compatibility between the meshes on the sepa-
rate components. This technique can help achieve e�cient solutions for problems involving
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non-matching grids in �uid mechanics. For instance, it allows the selective use of locally struc-
tured grids in di�erent subdomains which is particularly helpful in the presence of boundary
layers that often arise in computational �uid dynamics. Moreover it also leads to fast local
solvers.
Although, one can achieve e�cient solutions via the traditional mortar �nite element method,

it is also important to simultaneously guarantee that these numerical solutions are also accu-
rate. One way to achieve this is to employ the mortar �nite element formulation in conjunction
with higher-order elements. The use of such high order elements can be realized in terms of
the hp-version of the �nite element method, where both mesh re�nement (h-version) and de-
gree enhancement (p-version) are combined to increase accuracy. This is particularly helpful
for solutions to boundary value problems of incompressible �uid �ow in non-smooth domains
that exhibit well-known corner singularities (even if the prescribed data are piecewise analytic)
and other phenomena such as locking. Note that the hp-version can, with proper mesh-degree
selection, lead to exponential convergence rates (see References [2–4]). The correct design of
elements and underlying method is therefore crucial, and is the issue we address in this paper.
The hp-version of the mortar �nite element method was �rst developed for the Poisson

problem by Seshaiyer and Suri in Reference [5]. The stability and convergence of this tech-
nique in the hp context was analyzed and tested computationally (see References [6–9]). The
mathematical theory of mortaring for the incompressible Stokes equations has been presented
for the h-version by Ben Belgacem in Reference [10] and by Achdou et al. in Reference [11].
It was also extended to spectral elements by Ben Belgacem et al. in Reference [12] and for
the hp-version by Ben Belgacem et al. in Reference [13]. Some related applications to �uids
can be found in References [14–16].
The purpose of this paper is to computationally validate the convergence behaviour for

the hp mortar �nite element formulation for the Stokes boundary value problem for viscous
incompressible �uid �ow. In particular, we recover exponential convergence for these tech-
niques in the presence of highly non-quasiuniform geometric meshes. Our numerical results
for h, p and hp mortar �nite element methods show that these methods behave as well as
conforming �nite element methods both in the presence of non-conformity in the mesh and
polynomial degree. Our computations also indicate that stress extraction can be accurately
performed even along the interfaces when mortar methods are used for the Stokes problem.

2. WEAK FORMULATION OF STOKES PROBLEM AND ITS DISCRETIZATION

Consider the Stokes boundary value cproblem for viscous incompressible �uid �ow over a
domain �⊂R2 (with boundary @�): Find a velocity �eld u=(u1; u2) and a pressure p such
that,

−��u+∇p= f in �; ∇ · u=0 in �; u=0 on @� (1)

Here, �¿0 is the kinematic viscosity which is related to the Reynolds number of the �ow.
The right hand side f =(f1; f2) is a given body force per unit mass.
De�ne L20(�) to be the space of real-valued square-integrable functions with vanishing mean

value. Let H 1
0 (�)= {u∈H 1(�) | u=0 on @�} and denote H1

0(�)=H
1
0 (�)×H 1

0 (�). Here we
have used standard Sobolev space notation. Both spaces L20(�) and H

1
0(�) are provided with

the norms and seminorms in the usual sense and (: ; :) is the usual L2(�) inner product. We can
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rewrite (1) as a weak formulation: Find a velocity �eld u∈H1
0(�) and a pressure p∈L20(�)

such that,

�(∇u;∇v)− (∇ · v; p)= (f ; v) and (∇ · u; q)=0 (2)

for all (v; q)∈H1
0(�)×L20(�). Let us denote b(v; q)=−(∇ · v; q). For f∈L2(�)=L2(�)×L2

(�), one can show using Brezzi’s saddle-point theory [17] that the problem (2) is well posed
and has a unique solution (u; p)∈H1

0(�)×L20(�). This follows from the following continuous
inf–sup condition:

inf
q∈L20(�)

sup
v∈H10(�)

b(v; q)
‖v‖H1(�)‖q‖L2(�)

¿�¿0 (3)

2.1. Conforming �nite element discretization for Stokes problem

We now discretize (2) by the �nite element method by choosing �nite dimensional spaces
VN ∈H1

0(�) and MN ∈L20(�) of piecewise polynomials that approximate the velocity and pres-
sure, respectively. Our problem can then be stated as: Find a discrete velocity uN ∈VN and a
discrete pressure pN ∈MN such that, �(∇uN ;∇vN )− (∇ · vN ; pN )= (f ; vN ) and (∇ · uN ; qN )=0,
for all (vN ; qN )∈VN ×MN . Further, the discrete problem has a unique solution (uN ; pN )∈(VN ;
MN ) if the following discrete inf–sup stability condition holds,

inf
q∈MN

sup
v∈VN

b(v; q)
‖v‖H1(�)‖q‖L2(�)

¿�(N )¿0 (4)

2.2. Mortar hp �nite element discretization for Stokes problem

We now partition the domain � into S non-overlapping polygonal subdomains {�i}Si=1, which
are geometrically conforming by which we mean that @�i ∩ @�j (i¡j) is either empty, a
vertex, or a collection of entire edges of �i and �j. In the latter case, we denote this inter-
face as �ij (i¡j) and this will consist of individual common edges �; �⊂�ij. (Let us point
out that the analysis can be extended to the case of overlapping non-matching grids by fol-
lowing Cai et al. [18]). Let us de�ne the interface set � to be the union of the interface
intersections @�i ∩ @�j (i¡j), which result in a non-empty �ij. We further subdivide �i into
triangles and parallelograms by regular families of meshes {Ti

h }. Let the maximum size of
triangulation of subdomain �i be hi. Note that the triangulations over di�erent �i are inde-
pendent of each other, with no compatibility enforced across interfaces. Let us stress that only
the velocity space and not the pressure space will be subjected to any particular continuity
constraints. For K ⊂Rn and k¿0 integer, let Pk(K) denote the set of polynomials of total
degree 6k on K while Qk(K) denotes the set of polynomials of degree 6k in each variable.
Denote Qk(K)=Qk(K)×Qk(K). Let k be a degree vector, k= {k1; k2; : : : ; kS} which speci-
�es the degree used over each subdomain and denote k= min16i6S {ki}. Let us assume that
the following local families of piecewise polynomial velocity and pressure spaces are given
on �i,

Vih; ki = {u∈H1(�i) | u|K ∈Qk(K) for K∈Ti
h ; u=0 on @�i ∩ @�}

Mi
h; ki = {q∈L2(�i) | q|K ∈Pk−1(K)}
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Note that Qk =Pk−1 has been shown to be uniformly divergence stable by Bernardi and Maday
in Reference [19]. We now de�ne a non-conforming space Ṽh;k= {u∈L2(�) | u|�i ∈Vih; ki}. It
can be noted that, Ṽh;k �⊂H1

0(�) and hence cannot be used for �nite element calculations.
Since the meshes Ti

h are not assumed to conform across interfaces, two separate trace
meshes can be de�ned on �ij, one from �i and the other from �j. In addition to the meshes,
the polynomial degrees may also be di�erent across interfaces. Given u∈Ṽh;k, we denote the
traces of u on �ij from each of the domains �i and �j by ui and u j, respectively. Then we
can de�ne the global non-conforming velocity space to be,

Vh;k=
{
u∈Ṽh;k

∣∣∣∣
∫
�
(ui − u j) � ds=0 ∀ �∈S�; ijh;k ∀ �⊂�ij ⊂�

}
(5)

where S�; ijh;k is a space of Lagrange multipliers for each edge �⊂�ij. (Note that Vh;k⊂ Ṽh;k and
it enforces the inter-domain continuity in a weak sense). In the mortar �nite element method
(see References [1, 20, 5, 8] and the references therein) the Lagrange multiplier space S�; ijh;k is
de�ned in the following way. Let the mesh Ti

h induce a mesh Ti
h (�ij) on �ij. Let �⊂�ij and

denote the subintervals of this mesh on � by Il; 06l6N . Let,

S�; ijh;k = {�∈C(�) | �|Il∈Pki(Il); l=1; : : : ; N − 1; �|Il∈Pki−1(Il) l=0; N} (6)

Then we set, the Lagrange multiplier space to be S�; ijh;k = S
�; ij
h;k × S�; ijh;k . Note that imposing the

mesh and degree on S�; ijh;k from the domain �i as has been done here is quite arbitrary,
and these can be taken from the domain �j as well, without changing the results obtained.
Seshaiyer and Suri [7] recently provided other choices for the Lagrange multiplier space.
The global pressure space is given by, Mh;k= {q∈L20(�) | q|�i ∈Mi

h; ki}. This space is pro-
vided with the L2(�)-norm while the global velocity space is endowed with a discrete Hib-
ertian broken norm, ‖u‖2∗=

∑S
i=1 ‖u‖2H1(�i). The mortar �nite element discretization to (2) is

then given as follows: Find (uh;k; ph;k)∈Vh;k×Mh;k satisfying,

aS(uh;k; v) + bS(v; ph;k)= (f ; v) and bS(uh;k; q)=0 (7)

where, aS(u; v)=�
∑S

i=1 (∇u;∇v)�i and bS(v; q)=−
∑S

i=1 (∇ · v; q)�i . Further, problem (7) has
a unique solution if the following discrete inf–sup condition holds (see Ben Belgacem et al.
[13] for more details): There exists a constant �′ such that,

inf
qh; k∈Mh; k

sup
vh; k∈Vh; k

bS(vh;k; qh;k)
‖vh;k‖∗ ‖qh;k‖L2(�)

¿�′¿0 (8)

The precise choice for �′ is derived in Reference [13] and is shown to be independent of the
number of subdomains. We then have the following global convergence error estimate:

Theorem 2.1
Let the exact solution (v; q)∈H1

0(�)×L20(�) satisfy vi= v|�i ∈Hl+1(�i) and qi= q|�i ∈Hl(�i)
for i=1; : : : ; S. Then for �= min(l; ki) and �′ given by (8) the discrete solution satis�es,

‖v − vh;k‖∗ + �′ ‖q− qh;k‖L2(�)6C
S∑
i=1

h�i
kli
(| log ki|1=2‖vi‖Hl+1(�i) + �′‖qi‖Hl(�i)) (9)
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Note that although this estimate is quasi-optimal by the pollution term
√| log ki|, it is very

useful in practice for hp computations.

3. COMPUTATIONAL EXPERIMENTS

We now introduce an auxiliary unknown �h;k, belonging to the Lagrange multiplier space
Sh;k=Sh;k(�)=

∏
�ij⊂� S

�; ij
h;k . De�ning the bilinear form cS(v; �)=

∑
�⊂�ij⊂�

∫
�(v

i − v j)� ds on
Ṽh;k×Sh;k, our problem becomes: Find (uh;k; ph;k; �h;k)∈Vh;k×Mh;k×Sh;k satisfying,

aS(uh;k; v) + bS(v; ph;k) + bS(uh;k; q) + cS(v; �h;k) + cS(uh;k; �)= (f ; v) (10)

We now report some computational experiments for the mortar mixed formulation (10) for
stationary Newtonian �ow on a L-Shaped domain �, shown in Figure 1. This domain is
subdivided into two rectangular subdomains �1 and �2 by the interface AO.
For our experiments, we let the viscosity �=1 and consider an exact solution that satis�es,

u=0 on the edges OC, OD and, −�u+∇p=0. It is given by

u(r; �) = r�[(1 + �) sin(�)�(�) + cos(�)�′(�); sin(�)�′(�)− (1 + �) cos(�)�(�)] (11)

p(r; �) =
−r�−1[(1 + �)2�′(�) + �′′′(�)]

1− � (12)

with,

�(�)=
sin((1 + �)�) cos(3��=2)
(1 + �)− cos((1 + �)�) − sin((1− �)�) cos(3��=2)

(1− �) + cos((1− �)�) and �=0:54448

Note that this solution exhibits a corner singularity phenomena at the reentrant corner O. In
our experiments, we consider tensor product meshes, where �2 is divided into n2 rectangles

Figure 1. (a) L-shaped domain and (b) tensor product mesh for m = n = 2.
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Figure 2. Exponential convergence for the mortar method over geometric meshes.

and �1 is divided into 2m2 rectangles (see Figure 1). Since the mesh on �1 is symmetric
about y=0, in the sequel we only describe the mesh on the top half.
First, we consider hp-version of the non-conforming method on geometric meshes. We take

m= n, and along the x and y axes, take the grid points, x0 = 0; xj=	
n−j
i ; j=1; : : : ; n, where 	i

is the geometric ratio used on �i. The optimal value was provided by Gui and Babu	ska [21] to
be 0:15, but we take 	1 = 0:17 and 	2 = 0:13 to make the method non-conforming. In Figure 2,
we plot the log(relative error) vs N 1=4 (where N is the number of degrees of freedom) which
results in a straight line, showing that the hp-version gives Ce−�N

1=4
convergence. The reason

we only get an exponent of N 1=4 rather than N 1=3 is that our tensor product meshes have too
many extra degrees of freedom compared to the optimized meshes that were presented by
Guo and Babu	ska in Reference [2]. We have also plotted the error vs N 1=3 in Figure 2, for
comparison. Panel (A) shows the results of velocity and panel (B) for the pressure.
Next, in Figure 3, we compare the conforming �nite element methods (	1 =	2 = 0:13 and

0:17) with the mortar method (	1 = 0:17; 	2 = 0:13), using n=4 layers. We see the charac-
teristic ‘S’ shaped convergence curve being clearly visible for both the velocity (Panel (A))
and pressure (Panel (B))—the middle part denoting the exponential p-version convergence
phase, which at the end �attens out to an algebraic rate. The �gure also indicates that the
convergence rates obtained by employing the non-conforming method does not deteriorate.
Note that the conforming method for 0:13 behaves better than 0:17 as N increases, showing
over-re�nement is better than under-re�nement.
We now show some results on computations for the error in the Lagrange multiplier which

is chosen according to (6). Note that the non-smooth solution in (11) has a r� singularity
which implies that u∈H�+1−
(�). Therefore, the gradient ∇u∈H�−
(�). Hence, the normal
derivative (which corresponds to the Lagrange multiplier) on the interface � is given by
@u=@n=∇u · n|� ∈H�−1=2−
(�). We consider the h-version using uniform meshes on �1 and �2.
For this, we take m grid points along both the x- and y-axis for �1 (top half) and n for �2, and
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Figure 3. Comparison of mortar method with conforming FEM for p-version over geometric mesh.
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Figure 4. Error in velocity, pressure, Lagrange multiplier for h-version with uniform mesh.

use mixed mortar formulation (10) with the combinations (m; n)∈{(2; 3); (4; 6); : : : ; (10; 15)}.
The percentage relative error in the discrete H1-norm for the velocity, the L2-norm for the
pressure and the L2-norm for the Lagrange multipler are plotted in Figure 4. We observe
a rate of O(h�) (where �=0:54448) for both the velocity and the pressure and a rate of
O(h�−0:5) for the Lagrange multiplier as expected.
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Next, we show the results of extracting point-wise derivatives along interface OA in
Figure 1(b) using the non-conforming method, even when the singular solution in (11) and
(12) is used. Since the derivatives of this unsmooth solution have a singular behaviour as
r→ 0, we extract values at 19 equally spaced points in [ 120 ;

19
20 ]. In Figure 5, we have plotted

u1x (the x-derivative of the �rst component of the velocity) as obtained from the exact solu-
tion, the average of the non-conforming solutions (from �1 and �2 using the mortar method),
and the Lagrange multiplier (−�1 = u1x) as obtained from the mortar method. The results are
shown for the cases where the polynomial degree is k=4 and 8, respectively, when a ge-
ometric mesh with n=2, 	1 = 0:17 and 	2 = 0:13 is used. It is observed that the computed
values are all comparable to the exact values. As expected, the Lagrange multiplier shows
oscillations as r→ 0 for k=4 and the oscillations are minimized as the polynomial degree
is increased to k=8. The results for u2x (not shown) are similar. This suggests that stress
extraction can be accurately performed even along interfaces when mortar methods are used
in Stokes problems.
Finally, we consider the experiments where the non-conformity is due to the polyno-

mial degree. In Figure 6, we show the percentage relative error in velocity for h ver-
sion over conforming uniform meshes on �1; �2 with m= n=1; 2; : : : ; 8 for the case of
(k1; k2)= {(3; 4); (3; 3); (4; 3); (4; 4)} where ki is the polynomial degree on �i ; i=1; 2. As
expected, the overall error for the method with non-conforming polynomial degree behaves
very similar to the method with conforming degrees in each domain. This suggests that
using mortaring to selectively increase polynomial degrees can be very e�ective in treat-
ing parts of the domain where the solution is unsmooth (e.g. due to boundary layers or
singularities).
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Figure 5. Point-wise extraction of u1x along interface OA.
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