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Abstract. In this work we consider the dynamical response of a non-linear
beam with viscous damping, perturbed in both the transverse and axial di-
rections interacting with a potential flow. In particular we show that for a
class of boundary conditions (clamped beam) and given inlet velocity flow for
the fluid, there exists appropriate energy norm for the parameters of the beam

(displacements) and flow (potential) bounded by the inlet boundary condition
for the fluid flow.

1. Introduction. Over many decades, the dynamics of vibrations of non-linear
beam structures has been a subject of great interest in the broad field of structural
mechanics [15, 11].There have been several classical approaches employed to solve
the governing nonlinear differential equations to study the non-linear vibrations in-
cluding perturbation methods [4], form-function approximations [8], finite element
methods [9] and hybrid approaches [10]. In many of these studies, axial deforma-
tion was neglected and the average axial force was assumed to be constant over
the length of the beam element. However, subsequent analysis showed that axial
displacements cannot be neglected in any nonlinear studies [14]. A more compre-
hensive presentation of the finite element formulation of nonlinear beams can be
found in [12, 16].

Of particular interest in recent years, has been the need to develop efficient com-
putational models for the interaction of nonlinear beam structures with fluid media
[7, 1, 5]. This is due to the enormous amount of applications of such models in a
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variety of areas including biomedical and aerospace applications. Moreover, under-
standing the fluid-structure interaction between nonlinear beams with fluid will pro-
vide better insight into understanding the interaction of other higher dimensional
structures with fluids. Although there have been several different computational
techniques that are currently being developed and tested for understanding such
beam-fluid interactions, there has not yet been a rigorous mathematical stability
analysis that has been performed for a nonlinear beam structure interacting with a
fluid.

In the current paper we consider a non-linear beam interacting with a two-
dimensional potential flow. The beam forms one boundary of the fluid domain
and is clamped at the end points. The normal component of the velocity of the
fluid on the beam is set equal to the transverse velocity of the beam. In addition
we consider transversal forces along the beam according to a pressure function via
the Bernoulli equation. These assumptions allow us to study a coupled fluid struc-
ture interaction problem as a boundary value problem for a fluid coupled with a
non-linear system of equations describing the transverse and axial displacement of
the beam. The objective of this paper is to perform a rigorous stability analysis of
the associate coupled problem.

The paper is divided into two principle sections. In section 2, we introduce
the mathematical model for the dynamic behavior of a nonlinear beam undergoing
deformation both in transverse and axial directions. We investigate the stability
of the non-linear boundary value problem for axial and transverse displacements of
the beam with arbitrary right hand side. The goal is to obtain an energy estimate
for the excited non-linear beam in relation to the external forces distributed along
the beam. In section 3, we will use the tools from section 2 to get an estimate
for the energy of the coupled fluid structure problem under the assumption that
the thickness of the beam is constant. The goal of this section is to get an energy
estimate for the coupled system in the domain of interest through the integral norm
of the velocity of the flow and its potential on the inlet boundary. Note that, we
have only considered this model for simplicity and the analysis presented can be
extended to other related problems as well. Also, understanding simpler models
often provides greater insight to more complex problems.

2. Mathematical model for the excited non-linear beam. In this section we
describe the mathematical model of a nonlinear beam of length L clamped at the
end points. Let u(x, t) and w(x, t) be the axial and transverse displacements of a
generic point on the beam neutral axis (Figure 1). Using the Kirchoff’s hypothesis
[12], one can express the nonlinear momentum equations as

ρsAutt + C1ut − EA

[

ux +
1

2
(wx)

2

]

x

= 0 , (1)

ρsAwtt + C1 wt −

[

EA

(

ux +
1

2
(wx)

2

)

wx

]

x

+ E (I wxx)xx = f , (2)

where ρs is the density of the beam, C1 the damping coefficient, E the Young’s
modulus, A and I, respectively, the area and the moment of inertia of the beam
cross section. In this work, we will assume for simplicity that the beam only ex-
periences a transverse load of f from the fluid and no axial load. Note that this
force f corresponds to the pressure exerted by the fluid on the beam (See Figure
1). Dividing Eqs. (1) and (2) by ρsA and considering the moment of inertia I to



426 E. KAYA, E. AULISA, A. IBRAGIMOV AND P. SESHAIYER

0 L
w(x,t)

u(x,t)

Fluid

Figure 1. Nonlinear beam immersed in a fluid

be constant leads to

utt + K1 ut − D1
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]

x

= 0 , (3)

wtt + K1 wt − D1

[
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2
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)]

x

+ D2 wxxxx = q , (4)

where K1 = C1/ρsA, D1 = E/ρs, D2 = E I/ρsA and q = f/ρsA.

2.1. Energy norm for the nonlinear beam. In the following we will show that
it is possible to build an appropriate energy norm that ensures the boundedness of
the beam dynamics with respect to the applied load q.

Multiplying (3) by ut and by aK1u, respectively yields,

uttut + K1 u2
t − D1

[
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2
(wx)2

]

x

ut = 0 , (5)

aK1uttu + aK2
1 utu − aK1D1

[

ux +
1

2
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]

x

u = 0 . (6)

where the constant a is chosen between 0 and 1. Multiplying (4) by wt and 1
2
aK1w,

respectively yields,
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By adding (5), (6), (7) and (8), integrating in x and by integration by parts, and
using the following relations

1

2
[u2

t ]t + K1 u2
t + aK1uttu +

aK2
1

2
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we obtain
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If we let
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then from Eq. (11) we will get

(V1)t + V2 =

∫ L

0

q

(

aK1w

2
+ wt

)

dx. (14)

In the particular for the case a = 0, equation (14) multiplied back by ρsA has a
clear physical meaning:

Proposition 1. For a = 0, the rate of change of the sum of the beam kinetic and
potential energies ρsA(dV1/dt) plus the dissipated power ρsA(V2) equals the flux of
energy given to the beam-system from the fluid flow.

Next, let us consider the general case a 6= 0. Although this case does not have
an immediate physical meaning, it allows us to prove an energy estimate which is
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presented next. By using Youngs’s inequality [3] we have,
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and therefore substituting the last inequality in the RHS of Eq. (14) we have
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From Poincare inequality [3]
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the following inequality follows
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where the L2 norm of q is taken in [0, L]. Observing that to each square term in
the V ∗

2 (21) there corresponds an analogous term in the V1 (12), it is not difficult
to see that

V ∗

2 ≤ 2V1. (24)

and combining (23) and (24) leads to the following inequality
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0
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Therefore we have the following result:

Theorem 2.1. Let the nonlinear beam be excited by a distributed transversal load
q, then the energy V ∗

2 satisfies inequality (25).

From Eq. (25) the following stability results can be obtained:

Remark 1. Assume ‖q‖L2
to be bounded by C for all time, then Inequality (25)

leads to
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In addition, if limt→∞ V ∗
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Remark 2. Assume
∫
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0
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In addition, if limt→∞ V ∗

2 (t) = A, then A = 0.

3. Beam-fluid interaction. We will now formulate the fluid-beam interaction
problem, where the beam is modeled as the top boundary of the 2-dimensional fluid
flow domain Ω. Let

- Ω be the fluid domain: Ω = {(x, y), 0 < x < L,−h < y < 0} ,
- Γ be the beam (top): Γ = {(x, y), 0 < x < L, y = 0} ,
- Γ1 be the inlet region (left): Γ1 = {(x, y), x = 0,−h < y < 0} ,
- Γ2 be the outlet region (right): Γ2 = {(x, y), x = L,−h < y < 0} ,
- Γ3 be the impermeable boundary (bottom): Γ3 = {(x, y), 0 < x < L, y = −h} ,
- H be the total extent of the domain in the third direction (orthogonal to x

and y).

We consider an inviscid, incompressible and irrotational flow with velocity ~v =
(v1, v2) equal to the gradient of the potential flow φ(x, y, t) and satisfying the
Laplace equation

∆φ = 0 on Ω , (28)
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with boundary conditions

φx = b(y, t) on Γ1 , (29)

φx = −αφt on Γ2 , (30)

φy = 0 on Γ3 . (31)

On the top boundary Γ the coupled system satisfies the continuity constraints

ut = φx = v1, (32)

wt = φy = v2, (33)

and the force balance equations

ρsAutt + C1ut − EA

[
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2
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x

]
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ρsAwtt + C1wt − EA
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2
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x

)
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]

x

+ EIwxxxx = p H , (35)

where p is pressure exerted from the fluid to the beam. According to the Bernoulli
equation [2, 6] the pressure p satisfies

p = −ρfφt − ρfg w , (36)

where ρf is the density of the fluid and g is the gravity acceleration.
Our goal is to obtain an energy estimate for the beam-fluid coupled system in the

region Ω∪Γ through the data available in the inlet boundary Γ1. This is described
next. Multiplying (28) by φt and applying the Green’s identity [3]we get,

0 =

∫
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∆φφt dx

= −
1

2

∫

Ω

[
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2
]

t
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∫

Γ

φyφt dx −

∫

Γ1

φxφt dy +

∫

Γ2

φxφt dy

= −
1

2
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2
]
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∫

Γ
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1

α

∫
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φ2
x dy. (37)

Multiplying by Hρf and rearranging the terms we obtain,

− Hρf

∫

Γ

φyφt dx = −
Hρf

2

∫

Ω

[

(∇φ)
2
]

t
dx − Hρf

∫
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bφt dy

−
Hρf

α

∫

Γ2

φ2
x dy . (38)

For the non-linear beam on the boundary Γ one can build an equation analogous
to the equation (11) with a = 0 and distributed load equal to f = H p
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φtφy dx .
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Observing that the second term in the right hand side of (39) is exactly the left
hand side of (38) and rearranging all the terms, it follows

1

2

d

dt

[
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2
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∫
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α
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= −

∫
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Hρfb φt dy. (40)

If we define the following two energy norms

I1(t) :=
1
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[
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and

I2(t) :=

∫

Γ

C1(u
2
t + w2

t ) dx +

∫

Γ2

Hρf

α
φ2

x dy , (42)

then we have,
dI1

dt
+ I2 = −

∫

Γ1

Hρfb φt dy. (43)

Integrating Eq. (43) in time from 0 to T gives the cumulative energy form

I1(T ) − I1(0) +

∫ T

0

I2(t) dt = −

∫ T

0

∫

Γ1

Hρfb φt dy . (44)

Eq. (40), or its integral form (44), has a clear physical meaning:

Theorem 3.1. The rate of change of the sum of all kinetic and potential energies
(dI1/dt) plus the sum of the dissipated power and the flux of outgoing energy (I2)
equals the flux of incoming energy (RHS).

4. Conclusion. In this paper, the dynamic behavior of a non-linear beam coupled
with a potential flow has been studied. Suitable energy norms for analyzing the
dynamics of the non-linear beam by itself as well as for the fluid-beam coupled
problem were developed and corresponding stability estimates were proved. The
estimate helps us to effectively quantify and evaluate the cumulative energy of the
coupled system in the whole region of interest. Although, these estimates were
presented in this paper for a beam-fluid interaction, one can extend the methods
presented to more complex problems involving dynamic interactions. The latter
will be investigated in our future work.
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