
DISCRETE AND CONTINUOUS Website: http://AIMsciences.org
DYNAMICAL SYSTEMS–SERIES B
Volume 5, Number 2, May 2005 pp. 335–352

INTRATROPHIC PREDATION IN A SIMPLE FOOD CHAIN

WITH FLUCTUATING NUTRIENT

S. R.-J. Jang

Department of Mathematics

University of Louisiana at Lafayette

Lafayette, LA 70504 USA

J. Baglama

Department of Mathematics

University of Rhode Island

Kingston, RI 02881 USA

P. Seshaiyer

Department of Mathematics and Statistics

Texas Tech University
Lubbock, TX 79409 USA

(Communicated by Shigui Ruan)

Abstract. A model of interaction between nutrient, prey, and predator with
intratrophic predation of the predator and a limiting periodic nutrient input

is proposed and studied. Dynamics of the system are shown to depend on two
thresholds. These thresholds are expressed in terms of certain periodic solu-
tions of the system. Intratrophic predation can have impact on the model only
if both thresholds are greater than zero. In this case positive periodic solutions
exist. Numerical techniques are then used to explore the effect of intratrophic
predation by examining the mean value and stability of these positive periodic

solutions. It is demonstrated numerically that intratrophic predation can in-
crease the stability region of the positive periodic solutions. It can also elevate
the mean values of prey population and decrease the mean values of nutri-

ent concentration for stable positive periodic solutions. Moreover, intratrophic
predation can eliminate the chaotic behavior of the system when the degree of

intratrophic predation is large enough.

1. Introduction. Mathematical models derived from biological considerations have
been studied to help answer some important biological questions. See Brauer [2],
Hosono [10], and Tang and Zou [20] for mathematical analyses and biological in-
terpretations of population models. In particular, classical predator-prey models
have been used to study nutrient-plankton interaction. The intensive investigation
of this simple food chain in various complexity has helped researchers in under-
standing and interpreting nutrient-plankton phenomenon. In most of these studies,
each plankton population is modeled explicitly. Therefore, either the systems are
very simple to allow for mathematical analysis, or else numerical simulations are
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used as a tool to study the large systems. Since ecosystems may involve hundreds
of species, it is almost impossible to model the interaction within an ecosystem
explicitly. Therefore, intratrophic predations arise when a large number of species
are lumped together and considered as a single population. In this case it is very
likely that some of the species of the population might prey on other species of the
same population. Unlike the classical predator-prey models, intratrophic predation
on the contrary has received only little attention. Its discussion stems from a survey
paper on evolution and intraspecific predation by Polis [16], who demonstrated that
cannibalism is an interesting and important mechanism in population dynamics.

By using continuous-time, age-structured population models, Bosch, Roos and
Gabriel [22], and Cushing [3] studied cannibalism and have contributed to the un-
derstanding of this biological phenomenon. Aside from cannibalism, however, intra-
trophic predation may include broader biological mechanisms as mentioned above.
Kohlmeier and Ebenhoh [13] incorporated intratrophic predation in a simple Lotka-
Volterra predator-prey model by assuming that the food resource that is available
to the predator is a weighted sum of prey and predator densities. Their numerical
simulations indicated a strong increase of both prey and predator as the intensity
of intratrophic predation increases. Pitchford and Brindley [15] analyzed the model
proposed by Kohlmeier and Ebenhoh [13] and concluded that the numerical findings
in [13] may not always be true. However, they showed that intratrophic predation
always increases the coexisting equilibrium value of the prey and its stability when
such a mechanism is very small.

Unlike the two trophic levels studied by the previous authors [13, 15], Jang and
Baglama [12] considered intratrophic predation in a nutrient-prey-predator model
with a limiting constant nutrient input. That is, the food resource of prey was mod-
eled explicitly. The incorporation of nutrient concentration as a state variable was
motivated by the benthic ecosystem in which different zooplankton species may be
regarded as a single predator population and some of the species may prey on the
others. Under the same modeling methology as Kohlmeier and Ebenhoh [13], and
Pitchford and Bradley [15], they showed that the mechanism of intratrophic pre-
dation can influence the dynamics of the model only if basic reproductive numbers
of both prey and predator are greater than 1. In this case, the mechanism always
decreases the nutrient concentration and increases the prey population for any in-
terior equilibrium. However, unlike the assumption made in Pitchford and Bradley
[15] for which the intensity of intratrophic predation is assumed to be very small,
the findings presented in [12] are valid for any degree of intratrophic predation.

There are numerous observations supporting the evidence that the input limiting
nutrient may vary with time [4, 14]. To incorporate day/night or seasonal cycles,
one may model the limiting nutrient input periodically. Our main objective in
this study is to investigate the effect of intratrophic predation on the dynamics
of such a system. The incorporation of periodic input nutrient has been studied
previously for chemostat systems by several researchers which includes Hsu [11],
Smith [18], Hale and Somolinos [7], Yang and Freedman[23], and more recently by
Ruan [21] for nutrient-plankton system. Our model presented here differs from those
classical chemostat systems and nutrient-plankton systems as the food resource
that is available to the predator is a linear combination of both prey and predator
populations instead of only prey population.

It is proved that the dynamics of the model depend on two thresholds. We show
that intratrophic predation can have impact on the dynamics of the model only if
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these two thresholds are positive. Numerical techniques are then exploited to study
the effect of the mechanism. The simulations clearly indicate that intratrophic pre-
dation can increase the mean value of prey population and decrease the mean value
of nutrient concentration for stable positive periodic solutions. Moreover, intrat-
rophic predation can also increase the stability of the positive periodic solutions
and eliminate the phenomenon of sensitive dependence on initial conditions when
the degree of intratrophic predation is sufficiently large. As a result, the mechanism
has the effect of stabilizing the nutrient-plankton interaction in a variable nutrient
input environment.

In the following section, a mathematical model is presented and its dynamical
consequences are discussed. Numerical simulations complementing these analytical
results will be given in Section 3. The final section provides a brief summary and
discussion.

2. The model. Let x(t) be the nutrient concentration or the food resource of prey
at time t. We assume in the absence of prey, the nutrient is governed by the chemo-
stat law. To incorporate seasonal or day/night cycles, we assume that the input
nutrient concentration varies periodically about a mean value. Consequently, the
nutrient concentration in the absence of prey is governed by the periodic equation
ẋ = k(x0 + ae(t) − x), where k is the constant input rate, or the washout rate, x0

is the constant input nutrient concentration, a, where 0 < a < x0, is the amplitude
of the oscillation, and e(t) is τ -periodic with mean value 0 and |e(t)| ≤ 1.

Let y(t) be the prey population at time t. The uptake of prey is modeled by

the Michaelis-Menten kinetics
m1x

a1 + x
, where a1 is the half-saturation constant and

m1 is the maximal nutrient uptake rate of prey. We let α denote the net nutrient
conversion rate and γ the death rate of prey. The predator population at time t is
denoted by z(t). Similar to the models given in [12, 13, 15], the food resource that
is available to the predator is modeled by y+ bz, where b, 0 ≤ b ≤ 1, is the measure
of intensity of intratrophic predation. If b = 0, there is no intratrophic predation
and consequently the prey is the only food resource for the predator. If b = 1,
the predator regards prey and predator alike and thus preys on both populations
indiscriminately.

We use a Holling-II functional response to model the predator’s uptake rate,
with half-saturation constant a2. Let m2 and δ be the maximal uptake rate and
the death rate of predator respectively, and let β be the net prey conversion rate.
Putting all these assumptions together, our model is given by the following system
of ordinary differential equations.

ẋ = k(x0 + ae(t)− x)−
m1xy

a1 + x

ẏ =
αm1xy

a1 + x
−

m2yz

a2 + y + bz
− γy (1)

ż =
βm2(y + bz)z

a2 + y + bz
−

m2bz
2

a2 + y + bz
− δz

x(0), y(0), z(0) ≥ 0,

where k, x0,m1, a1,m2, a2, γ, δ > 0, 0 < α, β ≤ 1, and 0 ≤ b ≤ 1.
Let us now study system (1). Consider the τ -periodic differential equation

ẋ = k(x0 + ae(t)− x). (2)
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It’s easy to see that (2) has a unique τ -periodic solution x∗(t), where

x∗(t) =
ke−kt

ekτ − 1

∫ t+τ

t

ekr(x0 + ae(r))dr (3)

and every solution x(t) of (2) can be written as x(t) = x∗(t) + (x(0) − x∗(0))e−kt

and thus x(t)− x∗(t)→ 0 as t→∞.
The first step in understanding system (1) is to show that solutions of the system

remain nonnegative and are bounded, so that system (1) is biologically meaningful.

Lemma 2.1 Solutions of (1) are nonnegative and (1) is dissipative.

Proof. Since ẋ|x=0 = k(x0 + ae(t)) > 0, ẏ|y=0 = 0 and ż|z=0 = 0, solutions of (1)
remain nonnegative for t ≥ 0. Let S = x+ y + z. Then

Ṡ ≤ k(x0 + ae(t)− x)− γy − δz

≤ k(x0 + a− x)− γy − δz

≤ k(x0 + a)− k0(x+ y + z)

where k0 = min{k, γ, δ}. It follows that

lim sup
t→∞

(x(t) + y(t) + z(t)) ≤
k(x0 + a)

k0
.

Moreover, since Ṡ|
S=

k(x0+a)
k0

≤ 0, we have x(t) + y(t) + z(t) ≤
k(x0 + a)

k0
for all t

large. This shows that system (1) is dissipative.

Clearly, (1) always has a trivial τ -periodic solution (x∗(t), 0, 0). We let

σ0 =
1

τ

∫ τ

0

[

αm1x
∗(t)

a1 + x∗(t)
− γ

]

dt.

Theorem 2.2 If σ0 < 0, then solutions (x(t), y(t), z(t)) of (1) satisfy lim
t→∞

y(t) =

lim
t→∞

z(t) = lim
t→∞

(x(t)− x∗(t)) = 0 for all 0 ≤ b ≤ 1.

Proof. Since ẋ ≤ k(x0 + ae(t) − x), it follows from (2) that x(t) ≤ x∗(t) + (x(0) −
x∗(0))e−kt for t ≥ 0. Thus for any ε > 0, there exists t0 ≥ 0 such that x(t) ≤ x∗(t)+ε
for t ≥ t0. We choose ε > 0 so that

∫ τ

0

[

αm1(x
∗(t) + ε)

a1 + x∗(t) + ε
− γ

]

dt < 0.

As ẏ ≤ y

(

αm1x

a1 + x
− γ

)

, we have

y(t) ≤ y(0)e

∫ t0

0

[

αm1x(r)

a1 + x(r)
− γ

]

dr
e

∫ t0+nτ

t0

[

αm1(x
∗(r) + ε)

a1 + x∗(r) + ε
− γ

]

dr

= y(0)e

∫ t0

0

[

αm1x(r)

a1 + x(r)
− γ

]

dr
e

∫ nτ

0

[

αm1(x
∗(r) + ε)

a1 + x∗(r) + ε
− γ

]

dr

for some n = n(t) > 0. Thus lim
t→∞

y(t) = 0, and as a result lim
t→∞

z(t) = 0.
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We are now in a position to show lim
t→∞

(x(t)−x∗(t)) = 0. Observe that
d

dt
(xekt) =

kekt(x0 + ae(t))−
m1xye

kt

a1 + x
. Thus,

x(t) = x(0)e−kt + ke−kt

∫ t

0

ekr(x0 + ae(r))dr −m1e
−kt

∫ t

0

x(r)y(r)ekr

a1 + x(r)
dr.

Notice as lim
t→∞

y(t) = 0 and x(t) is bounded, we have

lim
t→∞

e−kt

∫ t

0

x(r)y(r)ekr

a1 + x(r)
dr = 0.

On the other hand, x(0)e−kt +ke−kt

∫ t

0

ekr(x0+ae(r))dr is the solution of (2) with

initial condition x(0). Consequently, x(t) − x∗(t) → 0 as t → ∞ and the proof is
complete.

We conclude that intratrophic predation has no effect on the dynamics of the
system if σ0 < 0. This is because the input nutrient concentration is not sufficient
to support the prey population and consequently the predator also becomes extinct.
Therefore the mechanism of intratrophic predation has no effect to the interaction.
Suppose now σ0 > 0. It is straightforward to show that the trivial τ -periodic
solution (x∗(t), 0, 0) of (1) is unstable. Indeed, the linearization of system (1) about
the τ -periodic solution yields the following linear periodic system

Ż =













−k
−m1x

∗(t)

a1 + x∗(t)
0

0
αm1x

∗(t)

a1 + x∗(t)
− γ 0

0 0 −δ













Z,

where Z is a row vector of functions in one variable. The Floquet multipliers of
(x∗(t), 0, 0) are the eigenvalues of Φ(τ), where Φ(t) is the fundamental matrix solu-
tion of the above linear periodic system satisfying Φ(0) = I. A simple calculation
yields

Φ(t) =















e−kt e−kt

∫ t

0

−m1e
krx∗(r)z2(r)

a1 + x∗(r)
dr 0

0 e

∫ t

0

[
αm1x

∗(r)

a1 + x∗(r)
− γ]dr

0
0 0 e−δt















,

where z2(r) = e

∫ r

0

[

αm1x
∗(s)

a1 + x∗(s)
− γ

]

ds
. Thus the eigenvalues of Φ(τ) are e−kτ , e−δτ

and e

∫ τ

0

[

αm1x
∗(t)

a1 + x∗(t)
− γ

]

dt
> 1. This illustrates that (x∗(t), 0, 0) is unstable if

σ0 > 0.
We proceed to show that (1) has a nontrivial τ -periodic solution of the form

(x̄(t), ȳ(t), 0), where x̄(t), ȳ(t) > 0, when σ0 > 0. Let

Γ =

{

(x, y, z) ∈ R3
+ : x+ y + z ≤

k(x0 + a)

k0

}



340 S. R.-J. JANG, J. BAGLAMA, P. SESHAIYER

and Λ+(e) denote the ω-limit set of e ∈ R3
+. Since (1) is dissipative, Λ+(e) 6=

∅,Λ+(e) is compact and invariant, and Λ+(e) ⊂ Γ for any e ∈ R3
+. Let B be a

subset of Γ. The stable set W+(B) of B is defined to be {e ∈ R3
+ : Λ+(e) ⊂ B}.

The weak stable set W+
w (B) is defined as W+

w (B) = {e ∈ R3
+ : Λ+(e)∩B 6= ∅}. Let

M0 = {(x∗(t), 0, 0) : t ∈ [0, τ ]} and A = {(x, y, z) ∈ R3
+ : y = 0}. Similar to Ruan

[21], and Yang and Freedman [23], we need the following two lemmas to show the
existence of a τ -periodic solution of the form (x̄(t), ȳ(t), 0).

Lemma 2.3 For system (1), A ⊂W+(M0), and if e(0) ∈ A\M0 then lim
t→−∞

‖e(t)‖ =

∞.

Proof. A ⊂ W+(M0) is trivial. Let e(0) = (x(0), 0, 0) ∈ A \M0. Since y(t) =
z(t) = 0 for all t and x(t) = x∗(t) + (x(0) − x∗(0))e−kt, lim

t→−∞
x(t) = ±∞. Thus

lim
t→−∞

‖e(t)‖ = ∞. Let ê(0) = (x̂(0), 0, ẑ(0)) ∈ A \ M0. Then lim
t→−∞

‖ê(t)‖ =

lim
t→−∞

‖e(t)‖ =∞, where e(0) = (x̂(0), 0, 0), and the assertion is shown.

Lemma 2.4 If σ0 > 0, then lim inf
t→∞

y(t) > 0 for any solution (x(t), y(t), z(t)) of (1)

with y(0) > 0.

Proof. Let e = (x(0), y(0), z(0)) ∈ R3
+ with y(0) > 0 be given. If lim inf

t→∞
y(t) = 0,

then Λ+(e) ∩ A 6= ∅ and M0 ⊂ Λ+(e), and thus e ∈ W+
w (M0). On the other hand

if ē ∈ W+
w (M0), then lim inf

t→∞
yē(t) = 0. Thus W+

w (M0) = {ê ∈ R3
+ : lim inf

t→∞
yê(t)=0}.

We wish to show that A = W+(M0). It is necessary to show W+(M0) ⊂ A. Let
ê ∈ R3

+ \ A. If ê ∈ W+(M0), then Λ+(ê) ⊂ M0. Thus lim
t→∞

yê(t) = lim
t→∞

zê(t) = 0,

and there exists α̂ > 0 such that xê(t)− x∗(t+ α̂)→ 0 as t→∞.
We choose ε > 0 and t0 > 0 so that zê(t) < ε, xê(t) > x∗(t+ α̂)− ε for t ≥ t0 and

∫ τ

0

[

αm1(x
∗(t+ α̂)− ε)

a1 + x∗(t+ α̂)− ε
−

m2ε

a2 + bε
− γ

]

dt > 0. Consequently,

ẏ(t) ≥

[

αm1x(t)

a1 + x(t)
−

m2z(t)

a2 + bz(t)
− γ

]

y(t)

≥

[

αm1(x
∗(t+ α̂)− ε)

a1 + x∗(t+ α̂)− ε
−

m2ε

a2 + bε
− γ

]

y(t)

for all t ≥ t0, and thus lim
t→∞

y(t) =∞. We obtain a contradiction and conclude that

W+(M0) ⊂ A.
We next show that M0 is isolated for F, the flow generated by system (1), i.e.,

we need to find a neighborhood N of M0 such that M0 is the maximal invariant set
in N . Let

c = max
y∈[0,

k(x0+a)
k0

]

f ′(y)

where f(y) =
m2y

a2 + y
. We choose ∆0 > 0 such that

1

τ

∫ τ

0

[

αm1(x
∗(r)− ∆0

c
)

a1 + x∗(r)− ∆0

c

− (γ +∆0)

]

dr = σ0/2 > 0.

Let ∆ = ∆0/c. It can be shown that N = {e ∈ R3
+ : d(e,M0) < ∆0/c} is an

isolated neighborhood of M0, where d is the usual Euclidean metric in R3. For if
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this were not true, then there exists an invariant set V such that M0 ⊂ V ⊂ N and
V \M0 6= ∅. Since V is invariant, it follows from Lemma 2.3 that (V \M0)∩A = ∅.
Therefore if ê ∈ V \M0, then yê(0) > 0. Consequently, since V ⊂ N , we have

yê(t) > yê(0)e

∫ t

0

[

αm1(x
∗(r)−∆)

a1 + x∗(r)−∆
− (γ +∆0)

]

dr

for all t large and thus lim
t→∞

ye(t) = ∞. We obtain a contradiction and conclude

that M0 is isolated for F.
Since e ∈ W+

w (M0) \W+(M0) and M0 is isolated for F, Theorem 4.1 of Butler
and Waltman [1] implies that there exists ē ∈ Λ+(e) ∩ (W+(M0) \M0) = Λ+(e) ∩
(A \M0). But then Λ+(e) is unbounded by Lemma 2.3. We obtain a contradiction
and therefore lim inf

t→∞
y(t) > 0 is shown.

Theorem 2.5 If σ0 > 0, then system (1) has a τ -periodic solution of the form
(x̄(t), ȳ(t), 0), where x̄(t), ȳ(t) > 0 for 0 ≤ b ≤ 1.

Proof. Since the positive xy-plane is positively invariant, it is enough to show that
the xy-subsystem of (1) has a τ -periodic solution (x̄(t), ȳ(t)) with x̄(t), ȳ(t) > 0.
We consider the Poincaré map T induced by the xy subsystem of (1), T : R2

+ → R2
+

by T (x0, y0) = (x(τ), y(τ)), where (x(t), y(t), z(t)) is the solution of (1) with initial
condition (x0, y0, 0). Since (1) is dissipative, {T n(x0, y0)}

∞
n=0 has a convergent

subsequence for each (x0, y0) with the subsequential limit in the interior of R+
2 by

Lemma 2.4. Also T is orientation preserving and a diffeomorphism, Massera’s fixed
point theorem [17] implies that T has a fixed point (x̄, ȳ) in the interior of R2

+.
Consequently, (1) has a τ -periodic solution (x̄(t), ȳ(t), 0) with x̄(t), ȳ(t) > 0.

Theorem 2.5 asserts the existence of a τ -periodic solution of the form (x̄(t), ȳ(t), 0)
with x̄(t), ȳ(t) > 0 when σ0 > 0. In the following we show that such a τ -periodic
solution is unique when k = γ.

Suppose k = γ. We rescale system (1) by letting x̂ = x/x0, ŷ = y/αx0, ẑ =
z/αx0, m̂1 = αm1, â = a/x0, â1 = a1/x

0 and â2 = a2/αx
0. After incorporating

these new state variables and parameters, and ignoring all the hats, system (1)
takes the form

ẋ = k(1 + ae(t)− x)−
m1xy

a1 + x

ẏ =
m1xy

a1 + x
−

m2yz

a2 + y + bz
− ky (4)

ż =
βm2(y + bz)z

a2 + y + bz
−

m2bz
2

a2 + y + bz
− δz

x(0), y(0), z(0) ≥ 0.

We will use system (4) to study (1).

Theorem 2.6 If σ0 > 0 and k = γ, then system (1) has a unique τ -periodic solution
(x̄(t), ȳ(t), 0) with x̄(t), ȳ(t) > 0. Moreover, solutions (x(t), y(t), z(t)) of (1) with
z(0) = 0 and y(0) > 0 satisfy lim

t→∞
|x(t) − x̄(t)| = lim

t→∞
|y(t) − ȳ(t)| = lim

t→∞
z(t) = 0

for 0 ≤ b ≤ 1, i.e., (x̄(t), ȳ(t), 0) is globally attracting in the interior of the positive
xy-plane.
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Proof. It is enough to show that system (4) has the desired property. Since z(t) = 0
for t ≥ 0 as z(0) = 0, we consider the xy-subsystem of (4)

ẋ = k(1 + ae(t)− x)−
m1xy

a1 + x

ẏ =
m1xy

a1 + x
− ky (5)

x(0), y(0) ≥ 0.

We let N = x̂∗(t) − x − y, where x̂∗(t) is the unique τ -periodic solution of ẋ =

k(1 + ae(t)− x). Then Ṅ = −kN , and system (5) can be rewritten as

Ṅ = −kN

ẏ =

[

m1(x̂
∗(t)−N − y)

a1 + x̂∗(t)−N − y
− γ

]

y. (6)

Since lim
t→∞

N(t) = 0, the ω-limit set of (6) lies on the set N = 0. Restricted to the

set N = 0, we have

ẏ =

[

m1(x̂
∗(t)− y)

a1 + x̂∗(t)− y
− k

]

y (7)

0 ≤ y(0) ≤ x̂∗(0).

It is easy to see that y(t) ≤ x∗(t) for t ≥ 0 for any solution of (7).
We consider the Poincaré map S induced by (7), S : [0, x̂∗(0)] → [0, x̂∗(0)] by

Sy0 = y(τ, y0), where y(t, y0) is the solution of (7) with y(0, y0) = y0. Note that

S0 = 0, Sx̂∗(0) < x̂∗(0) and Ṡy0 =
∂y(τ, y0)

∂y0
= v(τ), where v(t) satisfies

v̇ =

[

m1a1y

(a1 + x̂∗(t)− y)2
+

m1(x̂
∗(t)− y)

a1 + x̂∗(t)− y
− k

]

v

v(0) = 1.

Since v(t) > 0 for t > 0, we see that S is strictly increasing on [0, x∗(0)]. In

particular, Ṡ0 > 1 by our assumption. Thus S has at least one positive fixed point.
If S has two fixed points, or equivalently if (7) has two positive τ -periodic solution
ȳi(t) > 0, i = 1, 2, it follows from (7) that ȳ1(t0) = ȳ2(t0) for some t0 ∈ (0, τ).
Consequently, y1(t) = y2(t) for all t and (7) has a unique positive τ -periodic solution
ȳ(t), 0 < ȳ(t) < x̂∗(t).

It is then straightforward to show lim
n→∞

Sny0 = ȳ(0) for 0 < y0 ≤ x̂∗(0). Indeed,

Sy0 > y0 if 0 < y0 < ȳ(0) and {Sny0} is an increasing sequence which is bounded
above. Thus lim

n→∞
Sny = ȳ, where ȳ > 0 is a fixed point of S by the continuity of S.

But then lim
n→∞

Sny0 = ȳ(0). Similarly, lim
n→∞

Sny0 = ȳ if ȳ(0) < y0 ≤ x∗(0). Thus

(7) has a unique positive τ -periodic solution ȳ(t) which is globally asymptotically
stable for (7). We apply Lemma A.4 of Hale and Somolinos [7] and conclude that
(6) has a globally attracting τ -periodic solution (0, ȳ(t)). As a result, (5) has a τ -
periodic solution (x̄(t), ȳ(t)) where x̄(t) = x̂∗(t)− ȳ(t) > 0 and is globally attracting
in the interior of positive xy-plane for system (5). Therefore, (1) has a unique τ -
periodic solution (x̄(t), ȳ(t), 0), which is globally attracting for system (1) on the
interior of the positive xy-plane.
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We now assume σ0 > 0 and k = γ so that system (1) has a unique τ -periodic
solution (x̄(t), ȳ(t), 0) where x̄(t), ȳ(t) > 0. We let

σ1 =
1

τ

∫ τ

0

[

βm2ȳ(t)

a2 + ȳ(t)
− δ

]

dt.

Theorem 2.7 Let σ0 > 0 and k = γ. If σ1 < 0, then solution (x(t), y(t), z(t)) of
(1) with y(0) > 0 satisfies lim

t→∞
(x(t)− x̄(t)) = lim

t→∞
(y(t)− ȳ(t)) = lim

t→∞
z(t) = 0 for

0 ≤ b ≤ 1.

Proof. Similar to the proof of Theorem 2.6 we consider the rescaled system (4).
We first claim that lim

t→∞
z(t) = 0. Letting v(t) = x̂∗(t) − x(t) − y(t), then v̇(t) =

−kv +
m2yz

a2 + y + bz
and thus

v(t) = e−kt

[

v(0) +

∫ t

0

ekrm2y(r)z(r)

a2 + y(r) + bz(r)
dr

]

.

It follows that either there exists t1 > 0 such that v(t) ≥ 0 for t ≥ t1 or v(t) ≤ 0

for t ≥ 0. For the latter case, we let w = z − v. Then ẇ ≤ −δz + kv ≤ −k̂(z − v),

where k̂ = min{δ, k} > 0. Thus lim
t→∞

w(t) = 0. Since z(t),−v(t) ≥ 0, we conclude

that lim
t→∞

z(t) = 0. For the former case, since x(t) + y(t) ≤ x̂∗(t) for t ≥ t1 and

solutions of system (7) are asymptotically attracted to ȳ(t), we have lim inf
t→∞

(ȳ(t)−

y(t)) ≥ 0. Thus for every ε > 0, there exists t2 ≥ t1 such that y(t) ≤ ȳ(t) + ε for

t ≥ t2. We choose ε > 0 such that
1

τ

∫ τ

0

[

βm2(ȳ(t) + ε)

a2 + ȳ(t) + ε
− δ

]

dt =
σ1
2

< 0. Then

ż ≤ (
βm2y

a2 + y
− δ)z implies

z(t) ≤ z(0)e

∫ t2

0

[

βm2y(s)

a2 + y(s)
− δ

]

ds
e

∫ nτ+t2

t2

[

βm2(ȳ(s) + ε)

a2 + ȳ(s) + ε
− δ

]

ds

= z(0)e

∫ t2

0

[

βm2y(s)

a2 + y(s) + ε
− δ

]

ds
e

1

2
nσ1τ

→ 0 as t→∞.

Thus lim
t→∞

z(t) = 0 is shown.

We now use the Poincaré map induced by system (4) to study global attractibility.
Defining P : R3

+ → R3
+ by P (x0, y0, z0) = (x(τ), y(τ), z(τ)), where (x(t), y(t), z(t))

is the solution of system (4) with x(0) = x0, y(0) = y0 and z(0) = z0 where y0 > 0.
Since (4) is dissipative, P is also dissipative. Moreover, P has a global attractor,
that is, there is a maximal, compact invariant set X such that lim

n→∞
Pnx ∈ X for

any x ∈ R3
+. Since lim

t→∞
z(t) = 0, X lies on the xy-coordinate plane. Restricted

to the xy-plane, Pn(x(0), y(0), 0) = (Sn(x(0), y(0)), 0), where S is the Poincaré
map induced by system (5). Consequently, P has two fixed points (x̂∗(0), 0, 0) and
(x̄(0), ȳ(0), 0). We wish to show lim

n→∞
Pn(x(0), y(0), 0) = (x̄(0), ȳ(0), 0).

Recall that A = {(x, y, z) ∈ R3
+ : y = 0} is a closed subset of R3

+. Clearly
M = {(x∗(0), 0, 0)} is the maximal compact invariant set in A and it is isolated
in X. The stable set of M is A by the proof of Lemma 2.4 as σ0 > 0. Thus it
follows from Theorem 4.1 of Hofbauer and So [8] that P is uniformly persistent
with respect to A, i.e., there exists ζ > 0 such that lim inf

n→∞
d(Pn(x, y, z), A) > ζ for
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all (x, y, z) ∈ R3
+ with y > 0. Therefore any subsequential limit of P has the form

(x, y, 0), where y > 0. We conclude that lim
n→∞

Pn(x, y, z) = (x̄(0), ȳ(0), 0) and the

proof is now complete.

It follows from Theorem 2.7 that intratrophic predation has no effect on the
dynamics of system (1) if σ0 > 0, k = γ and σ1 < 0. Let σ0 > 0, k = γ and σ1 > 0.
The linearization of (1) with respect to (x̄(t), ȳ(t), 0) gives the linear periodic system

Ẋ = B(t)X, where

B(t) =















−k −
m1a1ȳ(t)

(a1 + x̄(t))2
−m1x̄(t)

a1 + x̄(t)
0

αm1a1ȳ(t)

(a1 + x̄(t))2
αm1x̄(t)

a1 + x̄(t)
− k

−m2ȳ(t)

a2 + ȳ(t)

0 0
βm2ȳ(t)

a2 + ȳ(t)
− δ















.

Notice from Lemma 6.4 of [19] that the Floquet multipliers of (x̄(t), ȳ(t), 0) are s1, s2

and e

∫ τ

0

[

βm2ȳ(t)

a2 + ȳ(t)
− δ

]

dt
, where s1, s2 are the Floquet multipliers of (x̄(t), ȳ(t))

for the xy-subsystem of (1). Observe that |s1|, |s2| < 1 by Theorem 2.6. Since
σ1 > 0, we have

e

∫ τ

0

[

βm2ȳ(t)

a2 + ȳ(t)
− δ

]

dt
> 1.

Therefore (x̄(t), ȳ(t), 0) is unstable with stable set lies on the xy-plane.

Theorem 2.8 Let σ0 > 0, k = γ and σ1 > 0. Then system (1) is uniformly
persistent and (1) has a positive τ -periodic solution (x̂(t), ŷ(t), ẑ(t)) for 0 ≤ b ≤ 1.

Proof. We apply Theorem 3.1 of Butler and Waltman [1]. Let ∂F be F restricted
to ∂Γ, the boundary of Γ. Then Ω(∂F) = {Λ+(e) : e ∈ ∂Γ} = {M0,M1}, where
M1 = {(x̄(t), ȳ(t), 0) : 0 ≤ t ≤ τ}. Clearly ∂F is acyclic as M0 and M1 are glob-
ally attracting on the positive xz and xy-plane respectively so that no subset of
{M0,M1} forms a cycle. Since σ0, σ1 > 0, M0 and M1 are isolated for F respec-
tively. Similarly, we can show that M0 and M1 are also isolated for ∂F respectively.
Therefore ∂F is isolated and acyclic with acyclic covering {M0,M1}. Observe that

W+(Mi)∩
◦

Γ= ∅ for i = 0, 1 as σ0, σ1 > 0, where
◦

Γ denotes the interior of Γ. The-
orem 3.1 of Butler and Waltman [1] implies that (1) is uniformly persistent. Us-
ing Horn’s results concerning interior fixed points of Poincaré maps [9], Yang and
Freedman [23] established explicit existence criteria of interior periodic solutions for
certain ecological models. Since system (1) satisfies each of these conditions given

in [23], (1) has a τ -periodic solution in
◦

Γ and we conclude that (1) has a positive
τ -periodic solution.

3. Numerical Simulations. In this section we use numerical examples to study
system (1). Although there is evidence suggesting that input nutrient varies pe-
riodically, to our knowledge there are no specific periodic functions that model a
realistic system in the literature. Therefore, we choose

e(t) = sin

(

πt

10

)

and a = 5.
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Then the input nutrient concentration is periodic with amplitude 5 and period 20.
The parameter values for the model are a1 = a2 = 1, k = 0.5, x0 = 10,m1 = m2 =
0.8, γ = 0.5 and β = 0.8 for all simulations. These parameter values are within the
range of the parameter values studied in several nutrient-plankton models [5, 6].
The wide range of the parameter values cited in the literature on one hand reflects
uncertainties associated with the natural systems. On the other hand, different
natural systems have different biological complexity and as a result their parameter
values may differ.

Our analysis in the previous section is carried out only when the functional re-
sponses of both prey and predator are Michaelis-Menten. This particular functional
response was also used in [15] in their study of intratrophic predation. System (1)
with these parameter values and functionals then takes the following form.

ẋ = 0.5(10 + 5 sin(
πt

10
)− x)−

0.8xy

1 + x

ẏ =
0.8αxy

1 + x
−

0.8yz

1 + y + bz
− 0.5y (8)

ż =
0.64(y + bz)z

1 + y + bz
−

0.8bz2

1 + y + bz
− δz

x(0), y(0), z(0) ≥ 0.

The periodic solution (x∗(t), 0, 0) can be obtained analytically. When α = 1, σ0 =
1

20

∫ 20

0

(

0.8x∗(t)

1 + x∗(t)
− 0.5

)

dt = 0.2212 > 0. Therefore (x∗(t), 0, 0) is unstable. We

use α = 1 for the remainder of the simulations. Since k = γ = 0.5, (8) has a
unique 20-periodic solution (x̄(t), ȳ(t), 0) for which solutions of (8) with y(0) > 0
are asymptotic to when

σ1 =
1

20

∫ 20

0

[

0.64ȳ(t)

1 + ȳ(t)
− δ

]

dt < 0.

This is true if δ = 0.561. When σ1 > 0, system (8) has a positive 20-periodic
solution (x̂(t), ŷ(t), ẑ(t)). The linearlization about the positive periodic solution

yields the linear periodic system Ż = A(t)Z, with A(t) given below.

A(t) =

















−0.5−
0.8ŷ(t)

(1 + x̂(t))2
−0.8x̂(t)

1 + x̂(t)
0

0.8ŷ(t)

(1 + x̂(t))2
a22

−0.8ŷ(t)(1 + ŷ(t))

(1 + ŷ(t) + bẑ(t))2

0
0.64ẑ(t) + 0.8bẑ(t)2

(1 + ẑ(t) + bẑ(t))2
a33

















,

where a22 =
0.8x̂(t)

1 + x̂(t)
− 0.5−

0.8ẑ(t)(1 + bẑ(t))

(1 + ŷ(t) + bẑ(t))2
, and

a33 = 0.64
(y + 2bz)(1 + y + bz)− bz(y + bz)

(1 + y + bz)2
−

0.16bz(1 + y + bz)− 0.8b2z2

(1 + y + bz)2
− δ,

with y = ŷ(t) and z = ẑ(t). The fundamental matrix Φ(t) of the linear system

Ż = A(t)Z is obtained via numerical interpolations. We start from the situation
when there is no introtrophic predation b = 0, and vary δ so that the eigenvalues of
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Φ(20) has modulus 1. Denote the minimum value of δ by δ0 for which the positive
periodic solution is non-hyperbolic, and determine whether the positive periodic
solution is stable when δ > δ0 or when δ < δ0. We then increase b and look for δ0.
The bifurcation diagram with b as our bifurcation parameter is presented in Fig.1.
The figure demonstrates that intratrophic predation can increase the stability of the
positive periodic solutions even when such a mechanism is very small. The mean
values of the corresponding stable positive periodic solutions are plotted in Fig. 2, 3,
and 4. The graphs clearly indicate that intratrophic predation can increase the mean
values of the prey population and decrease the mean values of both the nutrient
concentration and predator population of the stable positive periodic solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.35

0.4

0.45

0.5

0.55

b

δ

0 < δ < 0.56 

Stable Region 

Unstable Region 

δ
0
 

α = 1 

Figure 1. We use α = 1 and plot the stable and unstable re-
gions of the positive periodic solutions by using the intensity of the
intratrophic predation b as our bifurcation parameter.
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2.6

2.65

2.7
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b

δ = 0.55 α = 1 

Mean value of X(t) ^ 

Figure 2. The mean values of the nutrient concentration for the
stable positive periodic solutions are plotted when δ = 0.55.
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Figure 3. The mean values of the prey population for the stable
positive periodic solutions are plotted by using b as the independent
variable.
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Figure 4. The mean values of the predator population for the
stable positive periodic solutions are given in the figure. The mean
values decrease as the parameter b increases.
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Figure 5. The nutrient concentration x(t) is plotted against t
when b = 0 and δ = 0.300016. The x component of the solution is
aperiodic.
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Figure 6. The prey population y(t) is plotted against t when b = 0
and δ = 0.300016. The plot also reveals that the predator popula-
tion is aperiodic.
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Figure 7. This is the predator population for the aperiodic solu-
tion with b = 0 and δ = 0.300016.
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Figure 8. As we increase b to b = 0.92, system (8) has a locally
asymptotically stable positive periodic solution as demonstrated
in Figure 1 when δ = 0.300016. The plot provides the nutrient
concentration of the stable positive periodic solution.
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Figure 9. We use two very similar initial conditions to test for
sensitive dependence on initial condition for model (8) when b = 0
and δ = 0.300016. Both prey and predator have the same pop-
ulation level. The dotted line is the nutrient concentration with
initial concentration only 0.01 more than the other one. It is clear
that two nutrient concentrations behave quite differently even when
time t is small.
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Figure 10. This is the figure when b = 0.92 by using δ = 0.300016.
The plot on the bottom uses initial condition almost exactly same
as the top plot except x(0) is increased by 0.01. From the figure
it can be seen that the nutrient concentration of the two solutions
are asymptotically the same.

Although from Figure 1 we can conclude that intratrophic predation can produce
larger stability region for the positive periodic solution, it does not provide any
information as to what happens when the periodic solution is unstable. To further
illustrate the stabilizing effect of intratrophic predation, we first demonstrate that
model (8) has aperiodic solutions when b = 0. See Figures 5-7 for nutrient, prey
and predator populations of the solution, respectively. In these figures, α = 1 and
δ = 0.300016 are used. We next fix every other parameters but increase b to b =
0.92. Then system (8) has a stable positive periodic solution as was demonstrated
in Figure 1. Figure 8 shows the nutrient concentration x(t) of the periodic solution.
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Figure 11. This is a bifurcation diagram using b as a bifurcation
parameter with δ = 0.300016. The figure plots 25 minimum values
of x-component of the solutions of (8) after transitive behavior has
been removed.

We next test for sensitive dependence on initial conditions when b = 0. We
use the same initial condition as in Figure 5 and compare the solution with the
initial condition by adding 0.01 to the nutrient concentration, while both prey and
predator populations are kept at the same level. The dotted line in Figure 9 is the
solution with new initial condition. The figure illustrates the x-component of the
two solutions. It is clear from Figure 9 that the model is sensitively dependent on
initial conditions when b = 0. This is an indication of chaos. When b = 0.92, since
the positive periodic solution is locally asymptotically stable as given in Figure 1,
the two solutions look alike. See Figure 10 for the case when b = 0.92.

From our numerical simulations of model (8) so far we know that intratrophic
predation can make the system more stable and it can also eliminate the sensitive
dependence on initial conditions as was found when there is no intratrophic pre-
dation. We now use b, the intensity of intratrophic predation, as our bifurcation
parameter and numerically plot the last 25 minimum values of x-component of the
solutions of system (8) after ignore the first 20000 iterations. From Figure 11 it is
clear that intratrophic predation can eliminate the chaotic behavior of this three
species food chain and make the nutrient-plankton interaction more stable.

4. Discussion. In this manuscript we study a nutrient-prey-predator model with
periodic nutrient input to incorporate day/night or seasonal variations of the natural
systems. Moreover, the predator population is assumed to be either cannibalism
or may consist of several different species and some of the species may prey on
other species of the same population. This consideration in particular models the
realistic plankton system, where different species of larger zooplankton may prey
on smaller species of zooplankton, and all the zooplankton species are considered as
a single population. Our modeling methodology of intratrophic predation is similar
to that considered by Kohlmeier and Ebenhoh [13], Pitchford and Brindley [15], and
Jang and Baglama[12]. We use a parameter b, 0 ≤ b ≤ 1, to specify the intensity
of intratrophic predation. The motivation for this three trophic level food chain
is based on the study given by Kohlmeier and Ebenhoh [13], in which North Sea
benthic ecosystem was considered.
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It was shown that the dynamics of this simple food chain depend on the thresholds
σ0 and σ1. The threshold σ0 can be regarded as the average net reproductive number
of the prey. If σ0 < 0, then the system has only a unique periodic solution E0 =
(x∗(t), 0, 0) and all solutions are asymptotic to E0. We conclude that intratrophic
predation has no effect on the dynamics of the system. This phenomenon is due
to the extinction of the prey. Since the nutrient concentration cannot sustain the
prey population, the predator population also becomes extinct and consequently
intratrophic predation of the predator has no impact on the system.

If threshold σ0 > 0, then the periodic solution E0 = (x∗(t), 0, 0) is unstable.
System (1) has a periodic solution of the form E1 = (x̄(t), ȳ(t), 0). When k = γ,
then such a periodic solution on the xy-plane is unique and globally attracting on
the xy-plane. We can define another threshold σ1, where σ1 can be viewed as the
net reproductive number of the predator when the prey population is stabilized
at ȳ(t). If σ1 < 0, then the prey population cannot sustain the predator and the
predator becomes extinct independent of b. Therefore solutions with positive initial
prey population all asymptotic to E1 and intratrophic predation has no influence
on the dynamics of the system.

The more interesting case is when σ0 > 0 and σ1 > 0. This is the case when
both prey and predator populations can persist as shown by Theorem 2.8. We then
use b, the intensity of the intratrophic predation, as our bifurcation parameter.
The bifurcation given in Figure 1 clearly demonstrates that intratrophic predation
has the stabilization effect even when b > 0 is very small. Since positive periodic
solutions depend on δ, we calculate numerically the critical value δ0 such that the
positive periodic solution is non-hyperbolic when δ = δ0. Numerical simulations in
this study suggest that intratrophic predation can increase the mean values of the
prey populations of the stable positive periodic solutions, decrease the mean values
of the nutrient concentration and predator population of the stable positive periodic
solution, and it can also eliminate sensitive dependence on initial conditions of the
system.

Our study of intratrophic predation in this three trophic level food chain with
periodic nutrient input illustrates that intratrophic predation has the effect on the
system only if the net reproductive numbers of the prey and predator are greater
than zero. Under these circumstances, intratrophic predation can stabilize the sys-
tem. That is, intratrophic predation can change the stability of the coexisting
periodic solutions, and it has the effect of elevating the prey population of the co-
existing periodic solutions. Consequently, the mechanism of intratrophic predation
also decreases the nutrient concentration of the positive periodic solutions. More-
over, our numerical simulations demonstrated that a moderate degree of intratrophic
predation can eliminate the chaotic behavior of the system.

Acknowledgments. We thank both referees for their comments on improving the
original manuscript.
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