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Abstract. In this work we consider the dynamical response of a non-linear
beam with viscous damping, perturbed in both the transverse and axial direc-

tions. The system is modeled using coupled non-linear momentum equations

for the axial and transverse displacements. In particular we show that for a
class of boundary conditions (beam clamped at the extremes) and uniformly

distributed load, there exists a non-uniform equilibrium state. Different mod-

els of damping are considered: first, third and fifth order dissipation terms.
We show that in all cases in the presence of the damping forces, the excited

beam is stable near the equilibrium for any perturbation. An energy estimate

approach is used in order to identify the space in which the solution of the
perturbed system is stable.

1. Introduction. Over many decades, the dynamics of vibrations of nonlinear
beam structures has been a subject of great interest in the broad field of structural
mechanics [28, 22]. There have been several classical approaches employed to solve
the governing nonlinear differential equations to study the nonlinear vibrations in-
cluding perturbation methods [9], form-function approximations [18], finite element
methods [19, 21] and hybrid approaches [20]. In many of these studies, axial defor-
mation was neglected and the average axial force was assumed to be constant over
the length of the beam element. However, subsequent analysis showed that axial
displacements cannot be neglected in any nonlinear studies [27]. A more compre-
hensive presentation of the finite element formulation of nonlinear beams can be
found in [23, 29].

Of particular interest in recent years, there has been the need to develop effi-
cient computational models for the interaction of nonlinear beam structures with
fluid media [1, 2, 3, 4, 5, 6, 11, 16]. This is due to the large amount of applica-
tions of such models in a variety of areas including biomedical ([13, 25, 14] and
references herein) and aerospace applications [10, 26]. Moreover, understanding the
fluid-structure interaction between nonlinear beams with fluid will provide better
insight into understanding the interaction of other higher dimensional structures
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with fluids. Although there have been several different computational techniques
that are currently being developed and tested for understanding such beam-fluid
interactions, there has not yet been a rigorous mathematical stability analysis that
has been performed for a nonlinear beam structure interacting with a fluid. We
believe that to solve the latter, it is essential to understand and perform a rigor-
ous stability analysis of the associate structural mechanics problem, namely, the
dynamic behavior of a nonlinear beam undergoing deformation both in transverse
and axial directions, which will be the focus of the paper. In the original paper of
Dickey [7], the stability of a non-linear evolutionary beam equation is studied under
the assumption that the axial displacement is negligible and the original system is
reduced to a non-linear equation with damping for the vertical displacement only.
The most comprehensive stability analysis for a non-linear plate can be found in
[17]. There the contribution of the in-plane velocities are neglected which allow to
reduce the original system to a simplified system for the vertical displacement and
the Airy stress. The dissipative terms are then introduced into system by way of
nonlinear state feedback equation on the edge of the plate.

Toward this end, we consider a general theoretical model of a nonlinear beam with
viscous damping that deforms both in the axial and transverse directions due to an
external applied force, possibly from a fluid. The mathematical model considered
herein involves a coupled system of partial differential equations describing the
axial and transverse displacements of a nonlinear Euler-Bernoulli beam with viscous
damping. This coupled system is developed in Section 2 and a stationary solution
using a fixed point approach is presented in Section 3. Next, in Section 4, the
coupled system of equations is linearized about the stationary obtained solution.
Section 5 presents the key result on stability for the system obtained. In particular,
we show that for the coupled system, for a class of boundary conditions there exists a
non-uniform equilibrium state of the beam excited with uniformly distributed force.
It is rigorously proved using an energy estimates approach, that in the presence of
the damping forces, the excited beam is stable near equilibrium for any perturbation.
In addition it was observed that if the damping coefficient is vanishing in time faster
than 1/time, then system may resonate even with bounded right hand side.

2. Model problem and background. Consider a mathematical model for a ge-
ometrically nonlinear beam of length L clamped at the end points. Let u(x, t) and
w(x, t) be the respective axial and transverse displacements of a point on the neu-
tral axis of the nonlinear beam (Figure 1). Note that, we have only considered this
model for simplicity and the analysis presented can be extended to other related
problems as well. Also, understanding simpler models often provides greater insight
to further investigate more complex problems.

Using Kirchoff’s hypothesis [23], one can express the displacement at any given
point (u1, u2, u3) in the beam in terms of the axial and transverse deflections along
the neutral axis as:

u1(x, y, t) = u(x, t) − y
∂w

∂x
, (1)

u2(x, t) = w(x, t) , (2)

u3(x, t) = 0 . (3)
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Figure 1. Nonlinear beam immersed in a fluid

Using the nonlinear strain displacement relations [12]

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂um
∂xi

∂um
∂xj

)
, (4)

and omitting the large strain terms but only retaining the square of ∂u2/∂x (which
represents the rotation of a transverse normal line in the beam) one can easily verify
that

εxx =
∂u

∂x
− y

∂2w

∂x2
+

1

2

(
∂w

∂x

)2

, (5)

εyy = εxy = 0 . (6)

For the constitutive relationship, we now employ the linearized material law that
relates the stress to the non-linear strain given by σxx = E εxx (note that one can
also consider nonlinear material laws, which will be investigated in forthcoming
papers and will not be considered in this paper).

Using the principle of virtual work [23], one can then derive the following gov-
erning equations describing the motion of the nonlinear beam structure to be

ρAutt + C1ut − EA

[
ux +

1

2
(wx)

2

]
x

= 0 , (7)

ρAwtt + C1 wt − C2wtxx + C3 wtxxxx

−
[
EA

(
ux +

1

2
(wx)

2

)
wx

]
x

+ EI0 wxxxx = f , (8)

where ρ is the density of the beam, C1, C2 and C3 the damping coefficients, E
the Young’s modulus, A and I0, respectively, the area and the momentum of in-
ertia of the beam cross section. In Eq. (8) the higher orders damping terms
C2wtxx, and C3wtxxxx have been introduced according to [24], where the it was
stated that “the simple (first-order) viscous damping models ... are inadequate if
experimentally observed damping properties are to be incorporated in the model”.
These higher order terms were first introduced by Lord Kelvin and Robert Voigt.
In their hypothesis the internal dumping forces may be described with a positive
multiple of the elastic resonance forces acting on velocity rather than displacement.



1450 E. KAYA-CEKIN, E. AULISA, A. IBRAGIMOV AND P. SESHAIYER

Depending of the values of the constants C1, C2 and C3 each of the models
reported in [24] can be reproduced. In this work, we will assume for simplicity that
the beam only experiences a transverse load of f and no axial load. Note that this
force f may correspond to the pressure exerted by the fluid on the beam (See Figure
1). However for the analysis of the associated fluid-structure interaction problem,
one must consider (7,8) coupled with fluid equations (see for example [3, 15]).

Dividing system (7-8) by ρA reduces to

utt +K1 ut −D1

[
ux + 1

2 (wx)2
]
x

= 0 , (9)

wtt+K1wt−K2wtxx+K3wtxxxx−D1

[
wx

(
ux+ 1

2 (wx)2
)]

x
+D2wxxxx = q, (10)

where K1 = C1/ρA, K2 = C2/ρA, K3 = C3/ρA, D1 = E/ρ, D2 = E I0/ρA and
q = f/ρA. In this paper, we will present a detailed stability analysis of the coupled
system (9-10) Next we consider the stationary solution to this coupled system.

3. Stationary solution of the non-linear system. Consider the steady state
system of equations (9-10) on [0, L] given by

−D1

[
Ux +

1

2
(Wx)2

]
x

= 0 (11)

−D1

[
Wx

(
Ux +

1

2
(Wx)2

)]
x

+D2Wxxxx = q (12)

where W = W (x) and U = U(x) are only functions of x (therefore all the time
derivatives are identically zero). Consider a uniformly distributed load q. Since
the beam is assumed to be clamped at the end points, we have the following set of
boundary conditions

U(0) = U(L) = 0, (13)

W (0) = W (L) = W ′(0) = W ′(L) = 0. (14)

Then (11-12) yields

Ux + 1
2 (Wx)2 = C, (15)

−D1 (CWxx) +D2Wxxxx = q, (16)

for a unique constant C. It is not difficult to see, by using Rolle’s theorem and the
boundary conditions of U , that there exists at least one point x0 where Ux(x0) = 0.
This ensures the positivity of the constant C. By solving Eq. (16) using boundary
conditions (14), we obtain

W (x) =
q
(

(C D1)1/2(L−x)x+D
1/2
2 L

(
cosh (α(L−2x)/2) csch (αL/2)−coth (αL/2)

))
2(CD1)3/2

,

(17)

where α = (CD1/D2)1/2. Substituting this last expression for W 2
x in (11) and using the

boundary conditions (13) allow to solve for U

U(x) =
q2

48(C D1)3 (cosh(αL)− 1)

{
4(L− 2x)(6D2 + CD1(L− x)x)(1− cosh(αL))

+3D
1/2
2 L

[
8D

1/2
2 (cosh(α(L− x))− cosh(αx)) + +(CD1)1/2

(
3(L− 2x) sinh(αL)

+L sinh(α(L− 2x))− 4(L− 2x)(sinh(α(L− x)) + sinh(αx))
)]}

. (18)
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The constant C should be chosen to satisfy Eq. (15) which can be rewritten as a fixed
point equation

Ux +
1

2
(Wx)2 = F (C) = C , (19)

where

F (C) =
q2
(
48D2 + 2CD1L

2 − 18
√
CD1

√
D2 coth(αL/2)− 3CD1L

2csch(αL/2)2
)

48C3D3
1L

. (20)

Note that F (C) is a continuous functions for all C > 0. Moreover lim
C→0

F (C) = L6q2

60480D2
2
> 0

and lim
C→∞

F (C) = 0. As a consequence there exists at least one C0 (0 < C0 <∞) for which

F (C0) = C0. This fact guarantees existence of the steady-state solution. A further analysis
on the sign of F ′(C) suggests monotonicity of the function F (C) and indeed uniqueness
of the solution. In Figure 2 we show the graphs of the steady state solution (U ,W ) for
D1 = 1, D2 = 1, Q = 1 and L = 1. For this particular case the value of C is 1.6534×10−5.

Figure 2. Nonlinear beam steady state solution, for D1 = 1, D2 =
1, Q = 1 and L = 1.

In the next section, we consider the linearization of the system (7-8) about the stationary
solution.

4. Linearization about the stationary solution. Consider the Taylor expansions
of the functions (wx)2 and wx

[
ux + 1

2
(wx)2

]
around the stationary solutions Wx and

(Wx, Ux) respectively. We then have,

(wx)2 = (Wx)2 + 2Wx(wx −Wx) +O(wx −Wx)2 , (21)

and

wx

[
ux +

1

2
(wx)2

]
= Wx

[
Ux +

1

2
(Wx)2

]
+Wx(ux − Ux)

+

[
Ux +

1

2
(Wx)2 + (Wx)2

]
(wx −Wx)

+O
[
(wx −Wx)2, (ux − Ux)2, (wx −Wx)(ux − Ux)

]
, (22)

which reduces using (15) to

wx

[
ux +

1

2
(wx)2

]
= CWx +Wx(ux − Ux) + [C + (Wx)2](wx −Wx)

+O
[
(wx −Wx)2, (ux − Ux)2, (wx −Wx)(ux − Ux)

]
. (23)
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Let ε = u − U and δ = w −W , then εx = ux − Ux and δx = wx −Wx. Assuming ε, δ,
εx and δx small enough, we can neglect the second order terms and rewrite equations (21)
and (23) as

(wx)2 = (Wx)2 + 2Wxδx , (24)

wx

[
ux +

1

2
(wx)2

]
= CWx +Wxεx + [C + (Wx)2]δx . (25)

Substituting Eq. (24) into Eq. (9) yields

εtt +K1εt −D1

[
εx + Ux +

1

2
(Wx)2 +Wxδx

]
x

= 0 , (26)

and since
[
Ux + 1

2
(Wx)2

]
x

= 0, we have

εtt +K1εt −D1 [εx +Wxδx]x = 0 . (27)

Similarly substituting (25) into (10) we get

δtt +K1δt −K2δtxx +K3δtxxxx

−D1

[
CWx +Wxεx + [C + (Wx)2]δx

]
x

+D2[δxxxx +Wxxxx] = q . (28)

Substituting Eq. (16) into Eq. (28) yields

δtt +K1δt −K2δtxx +K3δtxxxx −D1

[
Wxεx + [C + (Wx)2]δx

]
x

+D2δxxxx = 0 . (29)

Now by letting a(x) = Ux, b(x) = Wx and d(x) = C + (Wx)2, we obtain the following
linearized system

εtt +K1εt −D1εxx −D1[b(x)δx]x = 0 , (30)

δtt+K1δt−K2δtxx+K3δtxxxx−D1[b(x)εx]x−D1[d(x)δx]x+D2δxxxx = 0. (31)

5. A stability result. In this section, we prove our main result for the solution of the
linearized system above.

Definition 5.1. (Monotonic stability) We call an equilibrium state monotonically sta-
ble [8], if there exists a Lyapunov function I(ε, δ, t) such that

I(ε, δ, t1) ≥ I(ε, δ, t2) if t1 < t2 . (32)

Definition 5.2. (Asymptotic stability) We call an equilibrium state asymptotically
stable [8], if there exists a Lyapunov function I(ε, δ, t) ≥ 0 such that

I(ε, δ, t) = 0 iff ε = δ = 0 , (33)

I(ε, δ, t)→ 0 for t→∞ . (34)

We will prove that our linearized system is both monotonically and asymptotically
stable for any initial perturbation (ε, δ, 0). To accomplish this, we will first manipulate
the linearized system (30-31) to develop a suitable energy norm that will be used in our
stability analysis.

Multiplying (30) by εt and K1ε we have respectively,

1
2
(ε2t )t +K1ε

2
t −D1εtεxx −D1εt [b(x)δx]x = 0 , (35)

K1εttε+ 1
2
K2

1 (ε2)t −K1D1εεxx −K1D1ε [b(x)δx]x = 0 . (36)

Let B1 = 1
2
(ε2t )t +K1ε

2
t and B2 = K1εttε+ 1

2
K2

1 (ε2)t, then

B1 +B2 =
1

2
(ε2t )t +K1εttε+K1ε

2
t +

1

2
K2

1 (ε2)t

=
1

2
(ε2t )t +K1 (εtε)t +

1

2
K2

1 (ε2)t

=

[
1

2
(εt +K1ε)

2

]
t

= [B(ε)]t . (37)
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Adding (35) and (36) and integrating with respect to x, we have,[∫ L

0

B(ε) dx

]
t

= D1

∫ L

0

εtεxx dx+D1

∫ L

0

εt [b(x)δx]x dx

+K1D1

∫ L

0

εεxx dx+K1D1

∫ L

0

ε [b(x)δx]x dx . (38)

Using integration by parts for the terms on the right hand side along with the boundary
conditions ε(0) = ε(L) = εt(0) = εt(L) = 0, reduces (38) to[∫ L

0

B(ε) dx

]
t

+
D1

2

[∫ L

0

ε2x dx

]
t

= −D1

∫ L

0

b(x)δxεxt dx−K1D1

∫ L

0

ε2x dx−K1D1

∫ L

0

b(x)δxεx dx . (39)

Next, multiplying (31) by δt and K1δ respectively, we get,

1

2
(δ2t )t +K1(δt)

2 −K2δtxxδt +K3δtxxxxδt

−D1 [b(x)εx]x δt −D1 [d(x)δx]x δt +D2(δxx)xxδt = 0 , (40)

and

K1δttδ +
K2

1

2
(δ2)t −K1K2δtxxδ +K1K3δtxxxxδ −

−K1D1 [b(x)εx]x δ −K1D1 [d(x)δx]x δ +K1D2(δxx)xxδ = 0 . (41)

Let B3 = 1
2
(δ2t )t +K1(δt)

2 and B4 = K1δttδ +
K2

1
2

(δ2)t, then

B3 +B4 =
1

2
(δ2t )t +K1(δt)

2 +K1δttδ +
K2

1

2
(δ2)t

=
1

2
(δ2t )t +K1(δtδ)t +

K1

2
(δ2)t

=

[
1

2
(δt +K1δ)

2

]
t

= [B(δ)]t . (42)

Adding (40) and (41) and integrating with respect to x, we have,[∫ L

0

B(δ) dx

]
t

= D1

∫ L

0

[b(x)εx]x δt dx+D1

∫ L

0

[d(x)δx]x δt dx

−D2

∫ L

0

(δxx)xxδt dx+K1D1

∫ L

0

[b(x)εx]x δ dx+K1D1

∫ L

0

[d(x)δx]x δ dx

−K1D2

∫ L

0

(δxx)xxδ dx+K2

∫ L

0

δtxxδt dx+K1K2

∫ L

0

δtxxδ dx

−K3

∫ L

0

δtxxxxδt dx−K1K3

∫ L

0

δtxxxxδ dx . (43)

Then applying integration by parts to the terms in the right hand side and using the
boundary conditions δ(0) = δ(L) = δx(0) = δx(L) = 0 (=⇒ δxt(0) = δxt(L) = 0), we
obtain [∫ L

0

B(δ) dx

]
t

+
K1K2

2

[∫ L

0

δ2x dx

]
t

+
K1K3

2

[∫ L

0

δ2xx dx

]
t

+
D2

2

[∫ L

0

δ2xx dx

]
t

= −K2

∫ L

0

δ2tx dx−K3

∫ L

0

δ2txx dx

−K1D2

∫ L

0

δ2xx dx−D1

∫ L

0

b(x)εxδxt dx−
D1

2

∫ L

0

d(x)(δ2x)t dx

−K1D1

∫ L

0

b(x)εxδx dx−K1D1

∫ L

0

d(x)δ2x dx . (44)
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Adding (39) and (44), we get,[∫ L

0

B(ε) dx

]
t

+

[∫ L

0

B(δ) dx

]
t

+
K1K2

2

[∫ L

0

δ2x dx

]
t

+
D1

2

[∫ L

0

d(x)δ2x dx+ 2

∫ L

0

b(x)δxεx dx+

∫ L

0

ε2x dx

]
t

+
D2 +K1K3

2

[∫ L

0

δ2xx dx

]
t

= −K2

∫ L

0

δ2tx dx−K3

∫ L

0

δ2txx dx

−K1D1

[∫ L

0

d(x)δ2x dx+ 2

∫ L

0

b(x)δxεx dx+

∫ L

0

ε2x dx

]
−K1D2

∫ L

0

δ2xx dx . (45)

Let B5 =

∫ L

0

d(x)δ2x dx, B6 = 2

∫ L

0

b(x)δxεx dx, B7 =

∫ L

0

ε2x dx, and recalling that d(x) =

C + b(x)2 one can show that,

B5 +B6 +B7 = C

∫ L

0

δ2x dx+

∫ L

0

(b(x)δx + εx)2 dx . (46)

Substituting (46) in (45), we then obtain

1

2

[∫ L

0

(εt +K1ε)
2 dx

]
t

+
1

2

[∫ L

0

(δt +K1δ)
2 dx

]
t

+
D1C +K1K2

2

[∫ L

0

δ2x dx

]
t

+
D2 +K1K3

2

[∫ L

0

δ2xx dx

]
t

+
D1

2

[∫ L

0

(εx + b(x)δx)2 dx

]
t

= −K2

∫ L

0

δ2tx dx−K3

∫ L

0

δ2txx dx

−K1D1C

∫ L

0

δ2x dx−K1D1

∫ L

0

(b(x)δx + εx)2 dx−K1D2

∫ L

0

δ2xx dx .

(47)

Now let us define

I(ε, δ, t) =
1

2

∫ L

0

(εt +K1ε)
2 dx+

1

2

∫ L

0

(δt +K1δ)
2 dx

+
D1C +K1K2

2

∫ L

0

δ2x dx+
D2 +K1K3

2

∫ L

0

δ2xx dx

+
D1

2

∫ L

0

(εx + b(x)δx)2 dx . (48)

All constant terms are nonnegative, therefore I(ε, δ, t) ≥ 0, and using the boundary con-
ditions, I(ε, δ, t) = 0 if and only if ε = δ = 0. Taking into account Eq. (47) and definition
(48)

I ′(ε, δ, t) = −K2

∫ L

0

δ2tx dx−K3

∫ L

0

δ2txx dx

−K1D1C

∫ L

0

δ2x dx−K1D1

∫ L

0

(b(x)δx + εx)2 dx−K1D2

∫ L

0

δ2xx dx ≤ 0 .

(49)

That implies that I(ε, δ, t) is a positive definite function which is not-increasing in time.
Thus we proved that:

Theorem 5.3. The steady state equilibrium is monotonically stable.
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Remark 1. The steady state equilibrium is monotonically stable if at least one of the
damping coefficients (K1, K2 or K3) is different from zero.

To prove that the system is also asymptotically stable let us first denote

I(ε, δ, t) =

5∑
i=1

yi(ε, δ, t) , (50)

where

y1(t) = α1

∫ L

0

δ2x dx with α1 =
D1C +K1K2

2
, (51)

y2(t) = α2

∫ L

0

δ2xx dx with α2 =
D2 +K1K3

2
, (52)

y3(t) = α3

∫ L

0

(εx + b(x)δx)2 dx with α3 =
D1

2
, (53)

y4(t) = α4

∫ L

0

(δt +K1δ)
2 dx with α4 =

1

2
, (54)

y5(t) = α5

∫ L

0

(εt +K1ε)
2 dx with α5 =

1

2
. (55)

We interpret yi as the i-component of the vector valued function ~y(t) = (y1, y2, ..., y5). We
will prove by contradiction that any trajectory ~y(t) converges to the origin. Let assume
that there exists a trajectory ~y(t) such that

‖~y(t)‖ := I(t) > A > 0 for all t > T . (56)

According to (49) the derivative along this trajectory is given by

d‖~y(t)‖
dt

=
dI(t)

dt
=

5∑
i=0

∂I

∂yi

∂yi
∂t

= −V (ε, δ) , (57)

V (ε, δ) = β1

∫ L

0

δ2x dx+ β2

∫ L

0

δ2xx dx+

+β3

∫ L

0

(b(x)δx + εx)2 dx+K2

∫ L

0

δ2tx dx+K3

∫ L

0

δ2txx dx , (58)

where β1 = K1D1C, β2 = K1D2, and β3 = K1D1. Inequality (56) implies at least one of
the five following cases:
i) y1 > q1A. For convenience the positive constant q1 will be selected later. In this case

V (ε, δ) > β1
α1
q1A = γ1A for all t > T .

ii) y2 > q2A. For convenience the positive constant q2 will be selected later. In this case

V (ε, δ) > β2
α2
q2A = γ2A for all t > T .

iii) y3 > A/5. In this case V (ε, δ) > β3
α3
A/5 = γ3A for all t > T .

iv) y4 > A/5. From this and from Cauchy inequality it follows

α4

∫ L

0

(
(1 +K1)δ2t + (K1 +K2

1 )δ2
)
dx ≥ α4

∫ L

0

(δt +K1δ)
2 dx >

A

5
. (59)

[Subcase-a:] If

α4

∫ L

0

(K1 +K2
1 )δ2 dx >

A

10
, (60)

then from Friedrichs inequality

CFα4

∫ L

0

(K1 +K2
1 )δ2x dx ≥ α4

∫ L

0

(K1 +K2
1 )δ2 dx >

A

10
, (61)

from which we can conclude that

V (ε, δ) >
β1

α4CF (K1 +K2
1 )

A

10
, for all t > T . (62)
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[Subcase-b:] Otherwise, it is

α4

∫ L

0

(1 +K1)δ2t dx >
A

10
. (63)

Again, applying Friedrichs inequality

CFα4

∫ L

0

(1 +K1)δ2xt dx ≥ α4

∫ L

0

(1 +K1)δ2t dx >
A

10
, (64)

from which we can conclude that

V (ε, δ) >
K2

α4CF (1 +K1)

A

10
, for all t > T . (65)

As a result we got V (ε, δ) > γ4A for all t > T , where the constant

γ4 = min

(
β1

10α4CF (K1 +K2
1 )
,

K2

10α4CF (1 +K1)

)
. (66)

v) y5 > A/5. From this and form Cauchy inequality it follows

α5

∫ L

0

((1 +K1)ε2t + (K1 +K2
1 )ε2) dx ≥ α5

∫ L

0

(εt +K1ε)
2 dx >

A

5
. (67)

[Subcase-a:] If

α5

∫ L

0

(K1 +K2
1 )ε2 dx >

A

10
, (68)

then from Friedrichs inequality

CFα5

∫ L

0

(K1 +K2
1 )ε2x dx ≥ α5

∫ L

0

(K1 +K2
1 )ε2 dx >

A

10
. (69)

Now assume y1 < q1A , otherwise we are already in case (i). Then from Cauchy inequality
it follows that ∫ L

0

(εx + b(x)δx)2 dx ≥
∫ L

0

(
ε2x
2
− (b(x)2 + 1)δx)2

)
dx . (70)

From above and from Eq. (69) it follows that∫ L

0

(
ε2x
2
− (b(x)2 + 1)δx)2

)
dx >

A

20CFα5(K1 +K2
1 )
− max(b(x)2 + 1)q1A

α1
. (71)

Let

q1 =
α1

40α5CF (K1 +K2
1 ) max(b(x)2 + 1)

, (72)

then we have ∫ L

0

(εx + b(x)δx)2 dx ≥ A

40CFα5(K1 +K2
1 )
, (73)

As a result we got V (ε, δ) > γ5A for all t > T , where γ5 is a positive constant depending
only on coefficients and max b(x)2.
[Subcase-b:] If (68) is not true than we have

α5

∫ L

0

(1 +K1)ε2t dx >
A

10
. (74)

From integrating Eq. (35), integrating by parts and using boundary conditions it follows

1

2

[∫ L

0

ε2t dx+D1

∫ L

0

ε2x dx

]
t

= −
∫ L

0

K1ε
2
t dx+D1

∫ L

0

εt [b(x)δx]x dx . (75)

By using Cauchy inequality we can assert that

D1εt [b(x)δx]x ≤
K1

4
ε2t +

D2
1

K1
([b(x)δx]x)2 . (76)
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From (75) and (76), it follows

1

2

[∫ L

0

ε2t dx+D1

∫ L

0

ε2x dx

]
t

≤ − 3

40

K1A

α5(1 +K1)
+

∫ L

0

D2
1

K1
([b(x)δx]x)2 dx . (77)

Expanding the argument of the integral in RHS of above inequality,(
[b(x)δx]x

)2
= bx(x)2δ2x + 2 bx(x)δx b(x)δxx + b(x)2δ2xx

and applying Cauchy inequality to the middle term it follows∫ L

0

D2
1

K1
([b(x)δx]x)2 dx ≤ r1y1 + r2y2 , (78)

where the positive constant r1 and r2 depend only on coefficients and max
(
b(x)2

)
and

max
(
bx(x)2

)
. Now assume y1 < q1A and y2 < q2A, otherwise we are in case (i) or (ii).

Let us chose q1 and q2 such that

(r1q1 + r2q2) <
1

40

K1

α5(1 +K1)
. (79)

Combining (77), (78) and (79) we obtain

dJ(t)

dt
:=

1

2

[∫ L

0

ε2t dx+D1

∫ L

0

ε2x dx

]
t

≤ − 1

20

K1A

α5(1 +K1)
. (80)

From above constructions it follows the following. If there exists a trajectory ~y(t) which
is not converging to the origin then or the functional V (ε, δ) > min(γi)A = α0 for t > T
or inequality (80) holds. Therefore along the trajectory ~y(f) or

dI(t)

dt
< −α0 , with α0 = min(γi)A , (81)

or
dJ(t)

dt
< −β0 , with β0 =

1

20

K1A

α5(1 +K1)
. (82)

This implies that I(t) or J(t) becomes negative for big enough t, which contradicts the
fact that I(t) and J(t) are positive definite.

Thus we proved that:

Theorem 5.4. The steady state equilibrium is asymptotically stable.

6. Linearized system with perturbed right hand side. In this section we present
some preliminary results of the coupled linearized system around the equilibrium (U,W ),
with perturbed right hand side q. The aim of this analysis is to indicate some differences
which arise when the beam system is coupled with some other physical system, for example
fluid motion.

Consider the governing differential equations for the coupled linearized system, with
both axial and transverse prescribed loads and with K2 = K3 = 0,

εtt +K1εt −D1εxx −D1(b(x)δx)x =f(t)g(x) , (83)

δtt +K1δt −D1(b(x)εx)x −D1(d(x)δx)x +D2δxxxx =f(t)q(x) . (84)

Denote vector ~u(x, t) = y(t) ~w(x), where

~w(x) =

(
φλ(x)
ϕλ(x)

)
is the vector of eigenfunctions for the problem

−D1φλxx −D1[b(x)ϕλx]x =λφλ , (85)

−D1[b(x)φλx]x −D1[d(x)ϕλx]x +D2ϕλxxxx =λϕλ , (86)
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with boundary conditions

φλ(0) = φλ(L) = 0 , (87)

ϕλ(0) = ϕλ(L) = ϕλx(0) = ϕλx(L) = 0 . (88)

Lemma 6.1. If the solution of the spectral problem (85-88) exists then λ > 0.

Proof. Let f(t) = 0, then the system (83-84) reduces to the linear homogeneous system
analyzed in Section 5. Substituting equations (85-86) in (83-84) yields

ytt +K1yt + λy = 0 . (89)

The characteristic polynomial associated with this second order ODE and and its roots
are given by

r2 +K1r + λ = 0 and r1,2 =
−K1 ±

√
K2

1 − 4λ

2
. (90)

Clearly, if λ ≤ 0 one of the two roots will be necessary greater or equal than zero. This
implies that the norm of the solution I(ε, δ, t) does not decrease in time, which contradicts
the conclusions made in Section 5 about stability of the system. Therefore λ > 0.

In Table 1, numerical evaluation of the smallest eigenvalue is reported for a large variety
of coefficients D1 and D2. All these results are in agreement with Lemma 6.1. In Figure 3
the first three eigenvalues and corresponding eigenfunctions (φ, ϕ) are shown for D1 = 1,
D2 = 1, Q = 1 and L = 1.

In this article we are not interested in the proof of existence of spectral problem but
rather in its application.

D1 λ

10 98.7
1 9.87

0.1 0.987
0.01 0.0987
0.001 0.00987
0.0001 0.000987

D2 = 1

D2 λ

10000 9.87
100 9.87
1 9.87

0.01 8.70
0.001 4.96
0.0001 3.85

0.000001 3.55

D1 = 1

D1 λ

1000 99.49
100 46.08
10 21.1
1 4.96

0.1 0.663
0.01 0.0805
0.001 0.00925
0.0001 0.000977
0.00001 0.0000986

D2 = 0.001

Table 1. Smallest eigenvalue for different values of the parameters
D1 and D2 with Q = 1 and L = 1.

Proposition 1. If

~w(x) =

(
φλ(x)
ϕλ(x)

)
is solution of (85-88), and g = φλ, q = ϕλ, then in order for ~u(x, t) to be a solution of the
system (83-84) it is necessary and sufficient that

ytt +K1yt + λy = f(t) . (91)
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λ1=9.87

λ2=39.48

λ3=88.83

Figure 3. First three eigenvalues and corresponding eigenfunc-
tions, for D1 = 1, D2 = 1, Q = 1 and L = 1.

Assume that Proposition 1 holds, then we can build two simple examples where some
sort of instabilities may occur.
Example 1. Let 4λ > K2

1 and assume

f(t) = eαt cos(βt) , (92)

where

α = −K1

2
, β =

√
4λ−K2

1

2
. (93)
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Then

y(t) = teαt[
1

2β
sin(βt)] (94)

solves the equation (91). For any given value of K1, even when the amplitude of the per-
turbation of the RHS of Eq. (91) decays exponentially, there exists a time interval [0, T ]
where y(t) increases. Hence, for this example the steady state solution equilibrium is not
monotonically stable. The critical point of the envelope curves g1/2(t) = ±teαt occurs in

tmax = 2
K1

, with maximum amplitude given by |g1/2(tmax)| = 2
eK1

. Clearly, depending on

the value of K1, the maximum amplitude can be large. In many physical processes this
may already indicate a structural collapse of the beam system.

Example 2. In the next example we show that if the damping coefficient K1 = K1(t)
decays faster than t,

tK1(t)→ 0 as t→∞,
then the system

ytt +K1(t)yt + λy = f(t) , (95)

may resonate with a bounded RHS. Let

f(t) = cos(αt) +
1

2
√
λ
K1(t)(sin(αt) + αt cos(αt)), (96)

where α =
√
λ. Then it is easy to see that

y(t) =
t

2
√
λ

sin(αt) , (97)

is solution of Eq. (95) and that the system resonates for any K1(t). Now, if tK1(t) →
0 as t→∞ than the RHS results to be bounded, and satisfies f(t)→ cos(αt) as t→
∞ . Clearly, monotonically and asymptotically stability conditions are not satisfied.

7. Conclusion. In this work the stability analysis of the steady state equilibrium of a
non-linear beam transversely and axially excited has been considered. It has been shown
that in the presence of damping terms there exists an appropriate energy norm for which
the system is stable near the equilibrium for any perturbation. Different damping terms
have been considered: first, third and fifth order mixed derivatives. We proved that the
system is monotonically stable if at least one of the damping terms is different from zero.
If all the damping coefficients are different than zero then the system is asymptotically
stable around equilibrium.

In case of perturbed RHS we have shown that if the solution of a particular eigenvalue
system exists then the corresponding smallest eigenvalue is positive. By using this result
we built two simple examples where in a certain sense instabilities may occurs. In the first
example we showed that by choosing a particular exponentially decaying force there exists
a time interval [0, T ], for which the solution may increase. In the second one we showed
that the solution can resonate if the damping coefficient decays faster that 1

t
, even with a

bounded RHS.
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