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Abstract The application of the new numerical approach
for elastodynamics problems developed in our previous paper
and based on the new solution strategy and the new
time-integration methods is considered for 1D and 2D axi-
symmetric impact problems. It is not easy to solve these
problems accurately because the exact solutions of the cor-
responding semi-discrete elastodynamics problems contain a
large number of spurious high-frequency oscillations. We use
the 1D impact problem for the calibration of a new analytical
expression describing the minimum amount of numerical dis-
sipation necessary for the new time-integration method used
for filtering spurious oscillations. Then, we show that the
new numerical approach for elastodynamics along with the
new expression for numerical dissipation for the first time
yield accurate and non-oscillatory solutions of the conside-
red impact problems. The comparison of effectiveness of
linear and quadratic elements as well as rectangular and
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triangular finite elements for elastodynamics problems is
also considered.
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1 Introduction

Despite a large number of publications related to numerical
methods for non-linear elastodynamics problems, there is no
reliable numerical technique for an accurate non-oscillatory
solution of wave propagation problems, even for linear elas-
tic materials. In effect, it means that one cannot trust the
numerical results obtained for wave propagation problems
in solids. Let us analyze the issues with existing numeri-
cal methods for elastodynamics in greater detail. Most finite
element procedures for elastodynamics problems are based
upon semi-discrete methods [5–7,19,20,23,25]. For these
methods, the application of finite elements in space to linear
elastodynamics problems leads to a system of ordinary dif-
ferential equations in time

MMMÜUU + CCCU̇UU + KKKUUU = RRR. (1)

Here MMM , CCC , KKK are the mass, damping, and stiffness matrices,
respectively, UUU is the vector of the nodal displacement, RRR
is the vector of the nodal load. Equation (1) can be also
obtained by the application of other discretization methods
in space such as the finite difference method, the spectral ele-
ment method, the boundary element method, the smoothed
particle hydrodynamics (SPH) method and others. Many dif-
ferent numerical methods have been developed for the time
integration of Eq. 1.

However, for wave propagation problems, the integration
of Eq. 1 leads to the appearance of spurious high-frequency
oscillations. Both the spatial discretization used for the
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derivation of Eq. 1, and the time integration of Eq. 1 affect
spurious oscillations and the accuracy of a numerical solu-
tion. There are no reliable numerical methods that yield an
accurate solution without spurious oscillations. Current
numerical approaches that treat this issue are based on the
introduction of numerical dissipation or artificial viscosity
from the first time increment for the suppression of spurious
high-frequency oscillations; see [1–8,15–20,22–25] and
others. However, numerical dissipation or artificial viscosity
also affects low modes of a numerical solution. Although this
effect is small for a small number of time increments, due
to error accumulation during the time integration of Eq. 1,
low modes of numerical solutions become very inaccurate
even at a moderate number of time increments. If numerical
dissipation is not used in calculations, then spurious high-
frequency oscillations spoil the numerical solution. The exis-
ting methods with numerical dissipation or artificial visco-
sity do not take into account the effect of the number of time
increments on the accuracy of final numerical results. There-
fore, different researchers report different values of artificial
viscosity needed for the suppression of spurious oscillations
(e.g., see the recent paper [24] and references there), and it
is not clear what the optimal value of artificial viscosity is
or how to select it (there is no understanding that this value
depends on the number of time increments). And even if spu-
rious oscillations are suppressed for a specific number of time
increments, the final solution will be inaccurate due to error
accumulation at low modes. This contradiction between the
accuracy of low modes and the suppression of spurious high-
frequency oscillations cannot be resolved within the existing
approaches.

Recently we suggested a new numerical technique that
yields non-oscillatory, accurate and reliable solutions for
wave propagation in solids; see [11,13]. The technique is
based on a new solution strategy and new first-, second-
and high-order accurate time-integration methods for elas-
todynamics. In this paper we will study and specify some
algorithmic parameters of the new technique using numeri-
cal experiments with 1D and 2D impact problems. Numeri-
cal solutions to these problems obtained by the integration
of Eq. 1 with the trapezoidal rule (without numerical dissi-
pation) contain a large number of spurious high-frequency
oscillations which must be removed without damage to low-
frequency modes. Therefore, these problems can be used as
benchmark problems for the development of new accurate
non-oscillatory numerical methods for wave propagation in
elastic materials. The paper includes a short description of
the new numerical technique based on the new two-stage
solution strategy for elastodynamics and the new first-order
time-continuous Galerkin (TCG) implicit method used for
filtering spurious high-frequency oscillations. This technique
has been developed in our previous papers; see [11,13].
Applying the new approach to the solution of a 1D impact

problem, we will determine an analytical expression for the
necessary amount of numerical dissipation (in terms of the
size of a time increment) which should be used for filtering
spurious high-frequency oscillations with the new first-order
TCG method. The necessary amount of numerical dissipa-
tion depends on the number of time increments, on the obser-
vation time, and on the dimensions of linear and quadratic
finite elements. Finally, we will show that the new numeri-
cal technique combined with the new formula yields accurate
and non-oscillatory numerical results for 1D and multi-
dimensional wave propagation problems. The effectiveness
of the application of quadrilateral and triangular 2D finite
elements with different aspect ratios to wave propagation
problems is compared. In contrast to existing approaches,
the new technique for the first time allows a reliable, fast,
accurate and non-oscillatory solution of wave propagation in
solids and does not require any guesswork for the selection
of numerical dissipation or artificial viscosity.

2 Numerical technique

The new two-stage solution strategy and the new TCG
methods suggested in [11–13] will be used in order to resolve
the seemingly irresolvable contradiction of current
approaches to filtering spurious oscillations. The main advan-
tages of the new approach are as follows; see [13]. The
new numerical technique: (a) allows the selection of the
best numerical method for basic computations according to
simple criteria (the most important one being the accuracy of
the method); (b) includes pre- or post-processing for
filtering spurious high-frequency oscillations, which requires
little computation time compared to the stage of basic com-
putations (a small number of time increments with the new
implicit TCG method with large numerical dissipation is used
for pre- or post-processing); (c) yields no error accumulation
due to numerical dissipation (or artificial viscosity) during
time integration at the stage of basic computations; (d) does
not require any guesswork for the selection of numerical
dissipation or artificial viscosity as do existing approaches.
Thus, the approach can be easily incorporated in compu-
ter codes and does not require interaction with users for the
suppression of spurious high-frequency oscillations. Below
we briefly describe the new solution strategy for elastody-
namics, and the new first-order implicit TCG method with
large numerical dissipation that, according to the new stra-
tegy, is used for filtering spurious oscillations (see [11–13]
for a detailed description).

2.1 A new two-stage solution strategy for elastodynamics

The idea of the new two-stage strategy is very simple. Because
for linear elastodynamics problems there is no interaction
between different modes during time integration (they are
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integrated independently of one another), the most accurate
time-integration method (without numerical dissipation or
artificial viscosity) should be used for the basic computa-
tions of Eq. 1, especially for a long-term integration. It means
that all modes (including high-frequency modes) are integra-
ted very accurately and the solution includes spurious high-
frequency oscillations. Then, for the damping out of high
modes, a method with large numerical dissipation (or with
artificial viscosity) is used for a number of time increments as
a pre- or post-processor. This method can be considered a fil-
ter of high modes. Usually, a small number of time increments
is sufficient for the filtering stage, with negligible error accu-
mulation at low modes. Therefore, even a time-integration
method of the first order of accuracy is competitive at this
stage.

Remark The proposed procedure has common features with
the modal decomposition method [1,8]. If all modes are
used, then the modal decomposition method yields the same
results as does the accurate time integration of a semi-discrete
system Eq. 1. However, it is known that accurate numeri-
cal results can be obtained by modal decomposition with
a limited number of low modes. The application of nume-
rical dissipation for pre- or post-processing in the sugges-
ted procedure is partly equivalent to removing a number of
high modes from the numerical results for which all modes
are included. It means that this approach is partly equiva-
lent to the modal decomposition method (without the neces-
sity of calculations of the eigenvalues and eigenvectors of a
semi-discrete system, Eq. 1).

In the current paper, we will use the implicit second-order
accurate trapezoidal rule for basic computations in order
to obtain an accurate solution of the semi-discrete elasto-
dynamics problem, Eq. 1 (this solution contains spurious
high-frequency oscillations). We should mention that other
known methods such as the explicit central difference method
(the second-order time-integration method with zero nume-
rical dissipation) or high-order implicit and explicit methods
can also be used for basic computations. All these methods
yield the same results for the time integration of Eq. 1 at
relatively small time increments. The selection of the trape-
zoidal rule for basic computations is related to its high accu-
racy (the trapezoidal rule is the most accurate method among
all second-order time integration methods) and simplicity of
implementation. For filtering spurious oscillations, the new
first-order implicit TCG method with large numerical dissi-
pation, developed in [13] and briefly described below, is used.

2.2 The first-order implicit TCG method for filtering
spurious high-frequency oscillations

For the step-by-step integration procedure with a time incre-
ment �t , the linear approximations of displacements U (t)

and velocities V (t) within a time increment �t (0 ≤ t ≤ �t)
are used for the new TCG method (see [13])

UUU(t) = UUU0 + UUU1t, VVV(t) = VVV0 + VVV1t, (2)

where UUU0 and VVV0 are the known initial nodal displacements
and velocities. The unknown nodal vector VVV1 can be expres-
sed in terms of the unknown nodal vector UUU1 as follows:

VVV1 = 1

a1
UUU1 − 1

a1
VVV0 . (3)

Finally, the following system of algebraic equations is solved
for the determination of UUU1

(MMM + a1CCC + a2
1 KKK )UUU1 = −a1KKKUUU0 + MMMVVV0 + RRR1 , (4)

where

a1 = m + 2

m + 3
�t , (5)

RRR1 = (m + 2)2

(m + 3)�tm+1

�t∫

0

RRR(t)tm+1 dt . (6)

The parameter m is responsible for the amount of numerical
dissipation. After the calculation ofUUU1 from Eq. 4, the values
of displacements and velocities at the end of a time increment
�t are calculated using Eqs. (2) and (3) for t = �t ; i.e.,

UUU(�t) = UUU0 + UUU1�t , (7)

VVV(�t) =
(

1 − 1

a1

)
VVV0 = 1

a1
UUU1�t . (8)

According to the accuracy analysis, the method has the first
order of accuracy in time. The spectral radii of the amplifica-
tion matrix for the implicit TCG method are shown in Fig. 1
for different values of m. The algorithmic damping ratios and
the relative period errors are given in Fig. 2. It can been seen
from Fig. 1 that the spectral radius decreases (numerical dis-
sipation increases) with the increase in the parameter m. The
maximum numerical dissipation corresponds to m = ∞. For

Fig. 1 Spectral radii r for the first-order implicit TCG method with
large numerical dissipation. Curves 1, 2, 3, and 4 correspond to
m = 0, 1, 15,∞, respectively
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Fig. 2 Algorithmic damping
ratios and relative period errors
for the first-order implicit TCG
method with large numerical
dissipation. Curves 1, 2, 3, 4,
and 5 correspond to
m = 0, 1, 15,∞ and the
trapezoidal rule, respectively

the case m = ∞, the parameter a1 = �t , and RRR1 should be
calculated analytically; see Eq. 6. If the analytical calcula-
tion of RRR1 at m = ∞ is impossible, then a value m ≥ 15 can
be used, because the difference in numerical dissipation for
m = ∞ and m ≥ 15 is not very essential (m = 15 is used in
calculations in this paper). The numerical examples show that
the first-order accurate implicit TCG method allows the sup-
pression of spurious high-frequency oscillations for a small
number of time increments while retaining good accuracy of
the solution at low modes (see below). CCC = 000 (no viscosity)
is used for the problems considered below.

3 Numerical modeling

The new technique based on the new two-stage solution
strategy and the new first-order implicit TCG method are
implemented into the finite element code FEAP [25]. Two
impact problems in the 1D and 2D axisymmetric cases will
be considered in the paper. These problems include propaga-
tion of discontinuities in stresses and velocities and cannot
be accurately solved by the existing methods based on the
introduction of artificial viscosity (or numerical dissipation)
at each time increment. We will use the first 1D impact pro-
blem, which has an analytical solution, for:

– the calibration of the minimum necessary amount of
numerical dissipation for the new first-order TCG method
with large numerical dissipation. A new analytical expres-
sion for numerical dissipation in terms of the size of a time
increment will be suggested for linear and quadratic finite
elements;

– the selection of the number of time increments needed
for the filtering of spurious high-frequency oscillations
by the new first-order TCG method with large numerical
dissipation;

– the comparison of effectiveness of linear and quadratic
finite elements for wave propagation problems.

The second 2D impact axisymmetric problem, which
includes simultaneous propagation of longitudinal and trans-
verse elastic waves and for which an approximate analytical
solution is known from the literature [21], will be used for

– verification of the applicability of the new formula for
the minimum necessary amount of numerical dissipation
derived in the 1D case for the multi-dimensional case. In
contrast to the 1D case with propagation of only longitudi-
nal waves, simultaneous propagation of longitudinal and
transverse elastic waves occurs in the multi-dimensional
case;

– comparison of effectiveness of linear and quadratic finite
elements for wave propagation problems in the multi-
dimensional case;

– comparison of effectiveness of quadrilateral and triangu-
lar finite elements for wave propagation problems in the
multi-dimensional case;

– study of the effect of the aspect ratio of 2D quadrilateral
finite elements on the accuracy of numerical results for
wave propagation problems.

3.1 Impact of an elastic bar against a rigid wall

3.1.1 Problem formulation

The first 1D problem is related to the impact of an elastic
bar of the length L = 4 against a rigid wall (see Fig. 3).
Young’s modulus is chosen to be E = 1 and the density to
be ρ = 1. The following boundary conditions are applied:
the displacement u(0, t) = t (which corresponds to the velo-
city v(0, t) = v0 = 1) and u(4, t) = 0 (which corresponds
to the velocity v(4, t) = 0). Initial displacements and velo-
cities are zero; i.e., u(x, 0) = v(x, 0) = 0. The problem
has the continuous solution for displacements ua(x, t) =
t − x for t ≥ x and ua(x, t)= 0 for t ≤ x , and the dis-
continuous solution for velocities and stresses va(x, t) =
−σ a(x, t) = 1 for t ≥ x and va(x, t) = σ a(x, t) = 0 for
t ≤ x (at the interface x = t , jumps in stresses and velocities
occur).

It is known that the application of traditional semi-discrete
methods to this problem leads to oscillations in velocities
and stresses due to the spurious high-frequency response
[9–12]. This impact problem with propagating discontinui-
ties in stresses and velocities can be considered a good
benchmark problem for the testing of new numerical methods
for wave propagation problems.
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Fig. 3 Impact of an elastic bar of length L = 4 against a rigid wall

It was shown in [13] that the new solution strategy combi-
ned with the new first-order implicit TCG method yields an
accurate and non-oscillatory solution to the 1D impact pro-
blem considered. However, the detailed study related to the
selection of the necessary amount of numerical dissipation
for filtering spurious oscillations has not been considered
in [13]. Below we will use the 1D impact problem for the
calibration of the minimum amount of numerical dissipation
needed in the new first-order TCG method to filter spurious
oscillations as well as for the study of the effectiveness of
the new solution strategy in combination with the new time-
integration TCG method.

3.1.2 Determination of the minimum amount of numerical
dissipation necessary for filtering spurious
oscillations

The following empirical formula for the selection of the size
of a time increment for a time-integration method with large
numerical dissipation has be suggested in [13]:

�t = α(N1)
�x�0.1(N )

c
, (9)

where c =
√

E
ρ

is the wave velocity; �x is the size of a finite

element; �0.1(N ) is the value of � = w�t at which the
spectral radius has the value 0.1 for the selected number N
of time increments (see [13]); �0.1 is used to scale spectral
radii calculated at different numbers of time increments N ;
α(N1) is the empirical coefficient depending on the time-
integration method, on the order of finite elements, and on
the number N1 of elements which are passed through by the
wave front (this number can be expressed as N1 = cT

�x ). This
formula yields the minimum necessary amount of numerical
dissipation (in terms of the size of a time increment), which
depends on the number of time increments N (through the
parameter �0.1(N )) used for filtering spurious oscillations,
on the observation time T and on the dimension of a finite
element �x (uniform meshes are assumed).

Remark 1 It should be mentioned that at a given number N
of time increments, two parameters α(N1) and �0.1(N ) in
Eq. (9) can be combined into one parameter ᾱ(N1); i.e., at dif-
ferent N the empirical coefficient ᾱ(N1) can be determined

from numerical experiments. However, we reduce the num-
ber of numerical experiments using the analytical scaling of
the spectral radii at different N. For the scaling, a point with
the value of the spectral radius r = 0.1 on the transient part
of the spectral radius diagrams is used. According to numeri-
cal experiments, Eq. (9) with the scaling coefficient �0.1(N )

calculated analytically from the spectral radius diagram,
yields a good approximation for the selection of numerical
dissipation at different N .

Remark 2 Equation (9) is based on the following idea. By
the use of the dimensionless coordinates, it is easy to show
that the solution of Eq. (1) for the 1D impact problem on a
uniform mesh depends only on the number of elements N1

passed by the wave front and is independent of the size of
elements, the observation time and material properties (we
also use the assumption that the solution is independent of
the total number of elements of a finite element mesh; see
Fig. 10). Then, the numerical dissipation needed for the sup-
pression of spurious oscillations for the 1D impact problems
depends on the same parameter N1. Equation (9) shows that
a non-dimensionless time increment �tc

�x is a function of the
parameter N1; see [13].

In order to apply Eq. (9) in calculations, we will describe a
procedure used for the analytical approximation of the coeffi-
cient α(N1) in Eq. (9). For this procedure we will use the new
solution strategy based on the basic computations and follo-
wing post-processing with the new first-order method TCG
with large numerical dissipation. N = 10 time increments is
used for post-processing, therefore �0.1(N = 10) = 0.81;
see [13] (the effect of the different numbers N for post-
processing is studied below as well). The velocity distribu-
tions after basic computations at different observation times
are shown in Figs. 4a and 5a. Two uniform meshes with
100 linear and 50 quadratic finite elements (i.e., meshes with
the same numbers of degrees of freedom) are used for these
calculations. The second-order accurate implicit trapezoidal
rule is used for basic computations, and the implicit first-
order accurate TCG method is used for post-processing. A
sufficiently small size of time increments (�t = 0.00005)
for basic calculations is applied. Therefore, for the selected
observation times, the error in time for basic computations
is very small and can be neglected for both meshes. From
Figs. 4a and 5a it follows that after basic computations the
slope of the wave front decreases with the increase in obser-
vation time (or more precisely, with the increase in the num-
ber of elements passed through by the wave front; see [13]).
Similar numerical results were reported in [14]. The ampli-
tude and frequency of spurious oscillations are also different
at the different observation times (despite the fact that for the
selected observation times the analytical solutions coincide;
see curve 5).
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Fig. 4 Velocity distribution along the bar for long-term behavior cal-
culated on a uniform mesh with 100 linear 2-node finite elements. a, b, c
correspond to the solutions obtained by the trapezoidal rule, by the new
strategy with post-processing based on uniform time increments of dif-
ferent sizes (using varying α) at different observation times, and by the
new strategy with post-processing based on uniform time increments of

the same sizes (using constant α = 4.67) at different observation times;
see the text for the explanations. Curves 1, 2, 3 and 4 correspond to the
observation times T = 2, 42, 98 and 202, respectively. Curve 5 corres-
ponds to the analytical solutions at the observation times T = 2, 42, 98
and 202

Next, we will define the measure of spurious oscillations
as follows. At each observation time we will find coordinates
x1 and x2 at which the wave front in a numerical solution
for the velocity intersects two horizontal lines corresponding
to the analytical solution for velocity v = 1 and v = 0; see
Fig. 6. Then, for each interval 0 ≤ x ≤ x1 and x2 ≤ x ≤ 4
we will find two relative errors e1 = (vmax

1 − vmin
1 )/vmax

and e2 = (vmax
2 − vmin

2 )/vmax, where vmax
i and vmin x

i are
the maximum and minimum values of a numerical solution
for the velocity at interval i (i = 1, 2), and vmax = 1 is the
maximum value of the velocity from the analytical solution.
Finally, we will define the relative error e = max(e1, e2)

related to spurious oscillations. It is clear that the smaller e
is, the smaller the spurious oscillations are.

The application of the new first-order TCG method with
large numerical dissipation decreases the relative error e. At
a fixed number of time increments N , this decrease depends
on the size of a time increment. By the variation of the size of

a time increment �t for post-processing, we determine from
numerical experiments the size of the time increment �t̄ at
which e ≈ ε = 0.25% where ε = 0.25% is the selected
tolerance. The tolerance should be small in order to bound
the amplitudes of spurious oscillations.

Remark We should mention that if a time increment is lar-
ger than �t̄ , then numerical dissipation will be larger and
the relative error e will be smaller than the selected tolerance
ε. However, excessive numerical dissipation also decreases
the accuracy of a numerical solution at low modes; i.e., the
width of the wave front increases (see Figs. 4b, c and 5b, c
and the discussion below). Therefore, only the necessary
amount of numerical dissipation (in terms of the size of a
time increment) is recommended in calculations for accurate
non-oscillatory numerical results.

By the procedure described above, the size of a time
increment �t̄ was determined from numerical experiments at
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Fig. 5 Velocity distribution along the bar for long-term behavior calcu-
lated on a uniform mesh with 50 quadratic 3-node finite elements. a, b, c
correspond to the solutions obtained by the trapezoidal rule, by the new
strategy with post-processing based on uniform time increments of dif-
ferent sizes (using varying α) at different observation times, and by the
new strategy with post-processing based on uniform time increments of

the same sizes (using constant α = 1.13) at different observation times;
see the text for the explanations. Curves 1, 2, 3 and 4 correspond to the
observation times T = 2, 42, 98 and 202, respectively. Curve 5 corres-
ponds to the analytical solutions at the observation times T = 2, 42, 98
and 202

Fig. 6 The determination of the measure of spurious high-frequency
oscillations from a numerical solution for the velocity (curve 1); see the
text for explanations. Curve 2 corresponds to an analytical solution for
the velocity

different observation times T for linear and quadratic
elements. Then, by the use of Eq. 9, the coefficient α was
recalculated for these observation times or, more precisely,
for the corresponding parameters N1 = cT

�x . Finally, we
found that the following formula

α

(
cT

�x

)
= a1

(
cT

�x

)a2

, (10)

where a1 = 0.279 and a2 = 0.3305 for linear elements, and
a1 = 0.1785 and a2 = 0.2357 for quadratic elements, yields
a good approximation of the coefficient α for any value of
parameter N1; see Fig. 7.

Remark 1 The use of Eqs. 9 and 10 for different elastodyna-
mics problems is based on the assumption that for different
problems the range of spurious high-frequency oscillations
depends on the size of finite elements �x and the observa-
tion time T . For the 1D impact problem, all frequencies of
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Fig. 7 The approximation of
coefficient α as a function of
parameter N1 (see the text for
explanations) for uniform
meshes with linear a and
quadratic b elements.
�—results from numerical
experiments; —analytical
approximation

a semi-discrete finite element model are excited. The nume-
rical dissipation described by Eqs. 9 and 10 and calibrated
for the 1D impact problem, determines (indirectly) and fil-
ters all spurious high-frequency oscillations for the given
size of a finite element �x and the given observation time
T . For other elastodynamics problems, for which just some
frequencies of a semi-discrete model are excited, the nume-
rical dissipation described by Eqs. 9 and 10 filters the same
range of high frequencies as that for the 1D impact problem.
Our experience shows that non-oscillatory numerical results
are obtained with Eqs. 9 and 10 for different elastodynamics
problems; i.e., the assumption that the range of spurious oscil-
lations depends on �x and T, is valid.

Remark 2 At mesh refinement, Eqs. 9 and 10 yield a decrea-
sing time increment at the same observation time. It means
that at mesh refinement more modes of a semi-discrete sys-
tem, Eq. 1, will be included in the solution after pre- or post-
processing; i.e. a numerical solution will be more accurate at
mesh refinement (similar to the modal decomposition method
with an increasing number of modes).

As we mentioned before, for post-processing we used
N = 10 time increments. Below we will explain the selec-
tion of this number N = 10 in calculations. Numerical expe-
riments show that any number of time increments can be used
for post-processing with the new first-order TCG method.
Spurious oscillations can be filtered even with one time incre-
ment if a relatively large size of a time increment is used.
Computation time for post-processing can be also reduced if a
small number of time increments is used for post-processing.
However, the accuracy of numerical results after post-
processing depends on the number of time increments. The
velocity distribution after post-processing with 2, 5, 10, 20
and 40 time increments is given in Figs. 8 and 9. Linear and
quadratic finite elements as well as two different observation
times are used in calculations. Numerical results show that
Eq. (9) describes well the necessary amount of numerical
dissipation for different selected numbers N of time incre-
ments used for post-processing; i.e., after post-processing the

relative error is e ≈ 0.25% for different N . Figures. 8 and 9
show that the accuracy of non-oscillatory solutions increases
with the increase in the number N of time increments (i.e.,
the width of the wave front decreases). The results obtained
with 10 time increments for post-processing are much more
accurate than those obtained with 2 and 5 time increments;
see curves 1, 2 and 3 in Figs. 8a, c and 9a, c. However, the dif-
ference in accuracy between the results after post-processing
with 10, 20 and 40 is insignificant; see curves 1, 2 and 3
in Figs. 8b, d and 9b, d. Therefore we selected N = 10 as
an optimal number with respect to computation time and
accuracy.

Finally, we will show that the boundary conditions do not
affect the necessary amount of numerical dissipation expres-
sed by Eq. 9. In addition to the 1D impact problems for a bar
with length L = 4, let us consider the 1D impact problem
for a bar with length L = 40 with the same boundary and
initial conditions as for the bar with L = 4. Uniform meshes
with 1,000 linear and 500 quadratic elements are used for the
long bar with L = 40 (i.e., the same sizes of finite elements
are used for both bars). Figure 10 shows the comparison of
the velocity distribution at observation time T = 34 for the
two bars. For convenience of comparison, the analytical and
numerical solutions for the long bar are shifted to the left
along the x-axis by the value 32. In this case, the analytical
solutions for the two bars coincide; see curve 3 in Fig. 10.
The numerical solutions for the two bars after basic com-
putations (see curves 1 and 2 in Fig. 10a and c) and after
post-processing (see curves 1 and 2 in Fig. 10b and d) are
slightly different. However, the same numerical dissipation
is required for post-processing in order to obtain the same
error e related to spurious oscillations.

3.1.3 Numerical results

The velocity distributions in Figs. 4a and 5a have a lot of
spurious oscillations. Therefore, it is difficult to compare the
accuracy of numerical results obtained on different meshes
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Fig. 8 Velocity distribution along the bar calculated on a uniform mesh
with 100 linear 2-node finite elements at observation times T = 2 (a,
b) and T = 98 (c, d). Curves 1, 2 and 3 in (a, c) correspond to the
solutions obtained after post-processing with 2, 5 and 10 uniform time

increments. Curves 1, 2 and 3 in (b, d) correspond to the solutions obtai-
ned after post-processing with 10, 20 and 40 time increments. Curve 4
corresponds to the analytical solutions at the observation times T = 2
and 98

and at different observation times (the selected observation
times correspond to many reflections of the elastic wave from
the ends of the bar). Below we discuss the numerical results
obtained by the application of the new solution strategy com-
bined with the first-order implicit TCG method with large
numerical dissipation used for the filtering of spurious oscil-
lations. As discussed above, N = 10 time increments are used
for the filtering procedure with minimum necessary amount
of numerical dissipation calculated according to Eqs. 9 and
10. As can be seen from Figs. 4b and 5b, non-oscillatory
results are obtained for the impact problem at different obser-
vation times on uniform meshes with linear and quadratic
elements. The following coefficients α = 1.02; 2.76; 3.66;
4.67 (according to Eqs. 10) and the corresponding sizes of
time increments �t = 0.0331; 0.08945; 0.11872; 0.15139
(according to Eq. 9) are used for post-processing on the uni-
form mesh with 100 linear elements at the observation times
T = 2; 42; 98; 202. The following coefficients α = 0.37;

0.78; 0.95; 1.13 (according to Eq. (10)) and the correspon-
ding sizes of time increments �t = 0.02397; 0.05048;
0.06172; 0.07324 (according to Eq. 9) are used for post-
processing on the uniform mesh with 50 quadratic elements at
the observation times T = 2; 42; 98; 202. As we can expect,
the numerical results at greater observation times are less
accurate due to the accumulation of the dispersion error of
the finite element solution with the increase in observation
time. We also solve the impact problem using post-processing
with the equally large numerical dissipation (related to the
maximum selected observation time T = 202) for all selected
observation times; i.e., the coefficient α = 4.67 and the time
increment �t = 0.15139 as well as the coefficient α = 1.13
and the time increment �t = 0.07324 are used in Figs. 4c
and 5c for all observation times for linear and quadratic ele-
ments, respectively. In this case the accuracy of numerical
results is approximately the same at all observation times; i.e.,
non-oscillatory results with practically the same slope of the
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Fig. 9 Velocity distribution along the bar calculated on a uniform mesh
with 50 quadratic 3-node finite elements at observation times T = 2
(a, b) and T = 98 (c, d). Curves 1, 2 and 3 in (a, c) correspond to the
solutions obtained after post-processing with 2, 5 and 10 uniform time

increments. Curves 1, 2 and 3 in (b, d) correspond to the solutions obtai-
ned after post-processing with 10, 20 and 40 time increments. Curve 4
corresponds to the analytical solutions at the observation times T = 2
and 98

wave front are obtained. However, if the minimum necessary
amount of numerical dissipation is used, the results are more
accurate (see curves 1,2,3 in Fig. 4b, c for linear elements
and curves 1,2,3 in Fig. 5b, c for quadratic elements).

Next, for the comparison of the effectiveness of linear
and quadratic elements for wave propagation problems, we
simultaneously plot the velocity distribution along the x-axis
(shown in Figs. 4b and 5b) for linear and quadratic elements
at different observation times; see Fig. 11. We remind that
the uniform meshes with linear and quadratic elements have
the same number of degrees of freedom. As can be seen
from Fig. 11, quadratic elements yield much better accuracy,
especially with the increase in observation time.

The instantaneous application of the finite velocity v0 = 1
at the left end of the bar excites a high-frequency response
of the bar at the initial time only. Therefore, according to
the new solution strategy, pre-processing or post-processing
can be applied to this problem for filtering spurious oscilla-

tions; see [13]. Numerical results show that practically the
same velocity distribution as shown in Figs. 4b and 5b are
obtained if pre-processing instead of post-processing (with
the same sizes of time increments as for post-processing) are
used. Figures 12 and 13 also show the variation of velocity
with time in the middle of the bar (x = 2) after basic compu-
tations (a) and using the new approach (pre-processing plus
basic computations) with linear and quadratic elements. For
pre-processing the size of time increment is calculated from
Eqs. (9) and (10) for the selected observation time T = 100
and equals �t = 0.12 and �t = 0.06211 for linear and qua-
dratic elements, respectively. As can be seen, the variation of
the velocity in time in the middle of the bar after basic com-
putations contains a lot of spurious oscillations which make
the solutions impracticable; see Figs. 12a and 13a. The new
strategy filters the spurious oscillations and yields the accu-
rate and non-oscillatory results; see Figs. 12b, c and 13b, c.
The same as for the spatial distribution, the time variation of
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Fig. 10 Velocity distribution along the bar for two bars of length L = 4
(curves 1) and L = 40 (curves 2) at the observation time T = 34; see the
text for explanations. a, c and b, d correspond to the solutions obtained
by the trapezoidal rule and by the new strategy with post-processing
based on 10 uniform time increments, respectively; α = 2.57 and

α = 0.76 are used for linear and quadratic elements, respectively. Uni-
form meshes with 100 (for L = 4) and 1,000 (for L = 40) linear
elements and 50 (for L = 4) and 500 (for L = 40) quadratic elements
are used. Curve 3 is the analytical solution at observation time T = 34

the velocity is much more accurate for quadratic elements
than for linear elements, see Fig. 14.

3.2 Impact of an elastic cylinder against a rigid wall
(the axisymmetric formulation)

The next problem is a more general axisymmetric formula-
tion of the 1D impact problem considered above; see Fig. 15.
A cylinder of length L = 2.5 and radius R = 1 is conside-
red. The z-axis is the axis of revolution. Young’s modulus is
chosen to be E = 1, Poisson’s ratio to be ν = 0.3, and the
density to be ρ = 1. The following boundary conditions are
applied: along boundary AB, un = t (which corresponds to
velocity vn = v0 = 1) and τn = 0; along boundaries C D and
AD, σn = 0 and τn = 0; along boundary BC , un = 0 and
τn = 0, where un , vn , and σn are the normal displacements,
velocities and tractive forces, respectively; and τn are the

tangential tractive forces. Initial displacements and veloci-
ties are zero; i.e., u(r, z, 0) = v(r, z, 0) = 0. To simplify the
comparison of a numerical solution of the problem with the
approximation of the analytical solution derived in [21] by
means of the Laplace transform, the following dimensionless
coordinates (r̄ and z̄), the dimensionless time t̄

r̄ = r

R
, z̄ = z

L
, t̄ = tc1

R
, (11)

and the normalized displacements ūi , velocities v̄i , stresses
σ̄i j and strains ε̄i j

ūi = ui c1

Rv0
, v̄i = vi

v0
, ε̄i j = εi j c1

v0
,

(12)

σ̄i j = σi j c1(1 + ν)(1 − 2ν)

νEv0
, i, j = r, z
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Fig. 11 Velocity distribution along the bar calculated on uniform
meshes with 50 quadratic 3-node (curves 1) and with 100 linear 2-node
(curves 2) finite elements. a, b, c and d correspond to the solutions obtai-

ned at observation times T = 2, 42, 98 and 202 using the new strategy
with post-processing (see Figs. 4b and 5b). Curves 3 correspond to the
analytical solutions at the observation times T = 2, 42, 98 and 202

are used, where c1 =
√

E(1−ν)
2ρ(1+ν)(1−2ν)

is the longitudinal
wave rate. The dimensionless observation time is chosen
to be T̄ = 2. The problem was solved on uniform meshes
with 9-node quadratic quadrilateral elements, 6-node qua-
dratic triangular elements and 4-node linear quadrilateral
elements. A consistent mass matrix was used in all calcu-
lations. The trapezoidal rule with uniform time increments
�t̄ = 0.00048 was applied for basic computations. At these
small time increments, the error in time was small and could
be neglected. As in the previous 1D problem, the numerical
results include many spurious high-frequency oscillations
in stresses and velocities on the coarse and fine uniform
meshes with 9-node quadratic quadrilateral elements after
basic computations; see curves 1 in Fig. 16. These oscil-
lations spoil the numerical solution and make it impracti-
cal. Thus, in order to filter the oscillations, post-processing
using 10 uniform time increments with the implicit first-order
TCG method is applied. For the selection of the minimum
amount of numerical dissipation necessary for the considered

axisymmetric problem, the following modification of Eq. 9
for multi-dimensional problems suggested in [13] is used

�t =
[

max
i, j

α

(
ci T

�x j

)] max
j

(�x j )

min
i

(ci )
�0.1(N )

(13)

= a1

⎡
⎣ max

i
(ci )T

min
j

(�x j )

⎤
⎦

a2 max
j

(�x j )

min
i

(ci )
�0.1(N ) ,

where maxi (ci ) = max (c1, c2) and mini (ci ) = min (c1, c2)

(i = 1, 2) are the maximum and minimum values between
the velocities of the longitudinal wave c1 and the transver-

sal wave c2 =
√

E
2ρ(1+ν)

, �x j are the dimensions of finite

elements along the axes x j (i = 1, 2 for the 2D problems
and i = 1, 2, 3 for the 3D problems). For uniform meshes
with linear and quadratic quadrilateral elements in the case
of multi-dimensional problems, we use the coefficients a1

and a2 obtained for the 1D case; see Eq. 10.
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Fig. 12 The variation of the velocity in time in the middle of the bar
(X = 2) calculated on a uniform mesh with 100 linear elements. a
and b correspond to the solutions obtained by the trapezoidal rule and

by the new solution strategy with pre-processing based on 10 uniform
time increments. c shows curves 1(a) and 2(b) in the time interval
40 ≤ t ≤ 60

Numerical results show that non-oscillatory smooth
numerical solutions on uniform meshes with quadrilateral
elements are obtained after post-processing based on the first-
order TCG method with time increments calculated from
Eqs. (10) and (13); see curves 2 in Fig. 16.

Figure 17 shows the convergence of non-oscillatory nume-
rical results, obtained with the new solution strategy (basic
computations plus post-processing) at mesh refinement, to
the approximation of the analytical solution derived in [21]
using the Laplace transform. Uniform meshes with 50 ×
100 =5,000, 100 × 200 =20,000 and 200 × 400 =80,000
quadrilateral 9 node quadratic elements were used. The
approximate analytical solution (curves 1 in Fig. 17) has
spurious oscillations due to Gibbs phenomena. The oscil-
lations can clearly be seen for the range 2 < z/R < 2.5 in
Fig. 17 where the exact stresses and velocities are zero (a
non-disturbed domain).

The instantaneous application of the finite velocity v0 =1
at the left end of the cylinder excites a high-frequency

response of the cylinder at the initial time only (as in the
previous 1D problem). Therefore, according to the new solu-
tion strategy, pre-processing or post-processing can be used
for this problem for filtering spurious oscillations; see [13].
Numerical experiments show that the application of another
scenario of the new solution strategy (pre-processing plus
basic computations) to this problem yields non-oscillatory
results close to those shown in Fig. 17 (the implicit first-
order TCG method with 10 time increments is used for pre-
processing with the same size of time increments as that used
for post-processing). We should mention that from the com-
putational point of view, pre-processing is more effective than

post-processing if the variation of any parameter (velocity,
stress or other parameter) in time at a specific point should
be analyzed. Figure 18 shows the variation of the dimension-
less velocity v̄z in time in the middle of the axis of revolution
(a, b) and in the middle of the external surface (c, d) after
basic computations (a, c) and after pre-processing plus basic
computations (b, d). As can be expected, there are a lot of
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Fig. 13 The variation of the velocity in time in the middle of the bar
(X = 2) calculated on a uniform mesh with 50 quadratic elements.
a and b correspond to the solutions obtained by the trapezoidal rule

and by the new solution strategy with pre-processing based on 10 uni-
form time increments. c shows curves 1(a) and 2(b) in the time interval
40 ≤ t ≤ 60

Fig. 14 The comparison of the curves from Figs. 12b and 13b related
to linear (curve 1) and quadratic (curve 2) elements in the time interval
40 ≤ t ≤ 60

spurious oscillations after basic computations, especially at
the point on the axis of revolution. The new technique with
pre-processing yields non-oscillatory accurate results at these
points; see Fig. 18b, d.

Fig. 15 Axisymmetric impact of an elastic cylinder of length L and
radius R against a rigid wall. z is the axis of revolution

Next, we will compare the effectiveness of linear and qua-
dratic elements for the considered axisymmetric problem.
The problem is computed using the new technique on a mesh
with 400 × 800 =320,000 quadrilateral 4 node linear ele-
ments and a mesh with 200 × 400 =80,000 quadrilateral 9
node quadratic elements. The meshes have the same number
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Fig. 16 The distribution of the dimensionless axial stress σ̄z (a) and
dimensionless velocity v̄z (b) along the dimensionless axial coordinate
z̄ = z/R and the fixed dimensionless radial coordinate r̄ (r̄ = 0.05 for
(a) and r̄ = 0 for (b)) at dimensionless time T̄ = c1t/R = 2. Curves 1

and 2 correspond to the numerical solutions obtained by the trapezoi-
dal rule and by the new solution strategy, respectively. Uniform meshes
with 5,000 (a) and 80,000 (b) quadratic Q9 elements are used

Fig. 17 The distribution of the dimensionless velocity v̄z (a, b) and
axial stress σ̄z c along the dimensionless axial coordinate z̄ = z/R
and the fixed dimensionless radial coordinate r̄ (r̄ = 0.05 for a c, and
r̄ = 1 for b) at dimensionless time T̄ = c1t/R = 2. Curve 1 is the

approximation of the analytical solution; see [21]. Curves 2, 3 and 4
correspond to the numerical solutions obtained with the new solution
strategy on uniform meshes with 80,000, 20,000, and 5,000 quadratic
Q9 elements, respectively
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Fig. 18 The variation of the dimensionless velocity v̄z in time in the
middle of the cylinder on the axis of revolution (a, b) and on the external
surface (c, d) calculated on a uniform mesh with 80000 quadratic Q9 ele-

ments. a, c and b, d correspond to the numerical results obtained by the
trapezoidal rule and by the new solution strategy with pre-processing,
respectively

Fig. 19 The distribution of the dimensionless velocity v̄z along the
axis of revolution (r̄ = 0) at dimensionless time T̄ = c1t/R = 2,
obtained by the trapezoidal rule a and by the new solution strategy with

post-processing b on the uniform meshes with 320,000 linear 4-node
elements (curves 2) and 80,000 quadratic 9-node elements (curves 1)
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Fig. 20 The distribution of the dimensionless velocity v̄z along the axis
of revolution (r̄ = 0) at dimensionless time T̄ = c1t/R = 2 calculated
by the new solution strategy on uniform meshes with 80,000 (a, curve
1), 20,000 (a, curve 2), 8,000 (a, curve 3) quadrilateral elements and

160,000 (b, curve 4), 40,000 (b, curve 5), 16,000 (b, curve 6) triangular
elements. c and d show the comparison of curves 1 and 4 in the intervals
0 ≤ z/R ≤ 2.5 c and 0.4 ≤ z/R ≤ 1.2 d

642,402 of degrees of freedom. The velocity distributions
along the axis of revolution after basic computations and
after basic computations plus post-processing are shown in
Fig. 19. As in the previous 1D problems, the quadratic ele-
ments yield better accuracy than linear elements for multi-
dimensional wave propagation problems at the same numbers
of degrees of freedom.

Finally, we will study the application of the new stra-
tegy (basic computations plus post-processing) and formulas
for the necessary amount of numerical dissipation, Eqs. 10
and 13, to the solution of wave propagation problems on
uniform meshes with quadrilateral and triangular elements
having different aspect ratios (or using mesh refinement in
one direction). We will use three uniform meshes with 200×
400 =80,000, 50 × 400 =20,000 and 20 × 400 =8,000
quadrilateral 9-node quadratic elements (where 400 elements
is used along the axis of revolution) and three uniform meshes
with triangular 6-node quadratic elements. The triangular
meshes are obtained by the division of each 9-node rec-

tangular element of the uniform meshes with quadrilateral
elements into two 6-node triangular elements; i.e., the cor-
responding meshes with 9-node rectangular elements and
6-node triangular elements have the same number of degrees
of freedom. The distribution of dimensionless axial velocity
along the axis of revolution calculated on all six meshes is
shown in Fig. 20. As we can see, the new technique with the
minimum necessary amount of numerical dissipation calcu-
lated from Eqs. 10 and 13 yields non-oscillatory results for all
aspect ratios of quadrilateral finite elements. However, nume-
rical results on the triangular meshes contain small oscilla-
tions; see Fig. 20b, c and d. It means that additional numerical
dissipation (the modification of Eqs. (10) and (13)) for these
triangular elements should be given. We also should men-
tion that at the same number of degrees of freedom, numeri-
cal results on meshes with quadrilateral elements are slightly
more accurate than those containing small spurious oscilla-
tions on the corresponding meshes with triangular elements;
see Fig. 20c, d.
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4 Concluding remarks

The new numerical approach based on the new solution stra-
tegy and the new-time integration methods for the first time
yields accurate and non-oscillatory solutions for wave pro-
pagation in elastic materials. A new analytical expression
for the minimum necessary amount of numerical dissipation
used by the new implicit time-integration method for filtering
spurious oscillations is suggested. It is shown that the new
approach with the new analytical formula for numerical dissi-
pation yields accurate and non-oscillatory results for 1D and
2D wave propagation problems on uniform meshes with qua-
drilateral finite elements. In contrast to existing approaches,
the new technique does not require any guesswork for the
selection of artificial viscosity and does not require interac-
tion between users and computer codes for the suppression of
spurious high-frequency oscillations. Further study is needed
for the determination of the minimum necessary amount of
numerical dissipation for the new technique applied on non-
uniform meshes and for non-homogeneous materials. In this
case, new parameters describing the space variation of mate-
rial properties and the dimension variation of finite elements
for non-uniform meshes should be included in the expres-
sion for the amount of numerical dissipation. We would like
to mention that the new technique with the new explicit time-
integration methods (see [13]) also yields accurate and non-
oscillatory results for wave propagation problems. Howe-
ver, the selection of analytical expressions for the minimum
necessary amount of numerical dissipation for the explicit
methods requires additional study and will be considered
elsewhere.
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