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Abstract

A multilevel approach with parallel implementation is developed for obtaining fast solutions of the Navier–Stokes equations solved
on domains with non-matching grids. The method relies on computing solutions over different subdomains with different multigrid levels
by using multiple processors. A local Vanka-type relaxation operator for the multigrid solution of the Navier–Stokes system allows solu-
tions to be computed at the element level. The natural implementation on a multiprocessor architecture results in a straightforward and
flexible algorithm. Numerical computations are presented, using benchmark applications, in order to support the method. Parallelization
is discussed to achieve proper accuracy, load balancing and computational efficiency between different processors.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, computational fluid dynamics (CFD) has been gaining acceptance as a design tool in industry but in
spite of the current successes it is necessary to enhance the prediction capability of the simulations. In fluid dynamics, it
is very common to have regions with different flows and therefore, there is a great interest in developing domain decom-
position techniques for coupling non-matching grids in order to compute solutions efficiently in different parts of the
domain. One popular domain decomposition approach that has been considered in the recent years is the mortar finite
element method (see e.g., [6,4,26] and references therein) which allows the coupling of different subdomains with non-
matching grids and discretization techniques within a mathematical and understandable framework [4,25,27]. This method
was originally introduced for spectral methods [6,7] and then was extended to the coupling of spectral and finite elements as
well as to the coupling of primal and dual methods [3,26,33]. The basic idea is to replace the strong continuity condition at
the interfaces between the different subdomains by a weaker one using Lagrange multipliers and making precise choices for
the solution and multiplier spaces to obtain optimal error estimates [5]. Given the matching conditions at the interface,
there are two different approaches to obtain the discrete solution: imposing the weak continuity on the global discrete space
or satisfying this condition by means of Lagrange multipliers. The first technique results in a nonconforming method,
where the discrete space is not contained in H1 Sobolev space (defined later), and the discrete spaces associated with a
nested sequence of triangulations are not nested. The second approach gives a saddle point problem and requires the solu-
tion of local problems in each subdomain in each iteration step. Other examples of domain decomposition methods in the
literature (some defined only at the inter-element, rather than the inter-sub-domain level) can be found in [24,29,11].
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An important issue in these coupling techniques is the construction of efficient iterative solvers for the resulting algebraic
linear system [2,10,19]. In the past few years, several researchers have considered multigrid methods as an option for mor-
tar finite elements [9,12,33]. The general idea in many of these papers is to guarantee that the iterate is contained in a sub-
space where the saddle point problem is positive definite. In many cases this approach requires the exact solution of a
modified Schur complement system within each smoothing step which may be too expensive in the multigrid algorithm.

The purpose of this paper is to introduce a flexible multilevel multigrid algorithm for the Navier–Stokes equation which
can be used in conjunction with multiprocessor architectures without any major revision or introduction of ‘‘ad hoc’’ struc-
tures. For this purpose a Vanka-type solver is used since the local Schur complement relaxation operator relaxes on the
single finite element only and therefore is very suitable for parallel computation and subgrid divisions. By using this
method it is possible to relax on a single element on the finest grid where we desire accurate solutions and simultaneously
relax on a coarse grid level in other parts of the domain, where the solution is not of particular interest. Different physical
processes can be modeled independently over different subdomains with different grids with less effort in computation using
the proposed methodology.

The paper is organized as follows. In Section 2, the formulation of the problem is presented and in Section 3, the finite
element discretization is formulated. In Section 4, numerical results for the parallel computational algorithm, applied to
various benchmark applications, are presented and tested.

2. Weak formulation of the Navier–Stokes

For 1 6 p <1 the Sobolev space Ws,p(O) is defined as the closure of C1(O) in the norm

kf kp
W s;pðOÞ ¼
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dx.

The closure of C10 ðOÞ under the norm k � kW s;pðOÞ will be denoted by W s;p
0 ðOÞ. For p = 2, we denote by Hs(O), s 2 R, the

standard Sobolev space of order s with respect to the set O, which is either the flow domain X, or its boundary C, or part
of its boundary. Hence, we associate with Hs(O) its natural norm kfks,O. Whenever possible, we will neglect the domain
label in the norm. For vector-valued functions and spaces, we use boldface notation. For example, Hs(X) = [Hs(X)]n de-
notes the space of Rn-valued functions such that each component belongs to Hs(X). Also we denote the space of square
integrable functions having zero mean over X by

L2
0ðXÞ ¼ p 2 L2ðXÞ

�����
Z

X
p d~x ¼ 0

( )
.

For C1 � C with nonzero measure, we also consider the subspace

H1
C1
ðXÞ ¼ f~v 2 H1ðXÞj~v ¼~0 on C1g.

Also, we write H1
0ðXÞ ¼ H1

CðXÞ. Let ðH1
C1
Þ� denote the dual space of H1

C1
. Note that ðH1

C1
Þ� is a subspace of H�1(X), where

the latter is the dual space of H1
0ðXÞ. The duality pairing between H�1(X) and H1

0ðXÞ is denoted by hÆ, Æi.
Let ~g be an element of H1/2(C). It is well known that H1/2(C) is a Hilbert space with norm

k~gk1=2;C ¼ inf
~v2H1ðXÞ;cC~v¼~g

k~vk1;

where cC denotes the trace mapping cC :H1(X)! H1/2(C). We let (H1/2(C))* denote the dual space of H1/2(C) and hÆ, ÆiC de-
note the duality pairing between (H1/2(C))* and H1/2(C).

In order to define a weak form of the Navier–Stokes equations, we introduce the continuous bilinear forms

að~u;~vÞ ¼ 2m
X2

i;j¼1

Z
X

Dijð~uÞDijð~vÞd~x 8~u;~v 2 H1ðXÞ ð1Þ
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X
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and the trilinear form
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For details concerning the function spaces we have introduced, one may consult [1,30] and for details about the bilinear
and trilinear forms and their properties, one may consult [17,30].

Let X be an open domain with boundary C. On part of the boundary C1 � C we apply Dirichlet boundary conditions.
Let~f 2 L2ðXÞ be the body force and~g 2 H1=2ðC1Þ be the prescribed velocity over C1 satisfying the divergence free compat-
ibility condition. The velocity, pressure and the stress vector fields ð~u; p;~sÞ 2 H1ðXÞ � L2

0ðXÞ �H�1=2ðCÞ satisfy the weak-
form of the Navier–Stokes equations

að~u;~vÞ þ cð~u;~u;~vÞ þ bð~v; pÞ þ h~s;~viC ¼ h~f ;~vi;
bð~u; rÞ ¼ 0;

h~u;~siC1
¼ h~g;~siC1

ð4Þ

for all ð~v; r;~sÞ 2 H1ðXÞ � L2
0ðXÞ �H�1=2ðC1Þ. We note that the system (4) must be solved for the stress vector~s ¼ �o~u=o~nþ

~np 2 H�1=2ðCÞ too and its computation is an important issue. The interested reader can consult [17] and citations therein.
We now partition the domain X into m non-overlapping subdomains fXigm

i¼1 such that oXi \ oXj (i 5 j) is either empty,
a vertex, or a collection of edges of Xi and Xj. In the latter case, we denote this interface by Cij which consists of individual
common edges from the domains Xi and Xj. We assume zero stress tensor whenever non-Dirichlet boundary conditions are
imposed, namely h~s;~viCnC1

¼ 0. The velocity, pressure and stress fields ð~ui; pi;~sijÞ 2 H1ðXiÞ � L2
0ðX

iÞ �H�1=2ðCijÞ must
satisfy the Navier–Stokes equations

að~ui;~viÞ þ cð~ui;~ui;~viÞ þ bð~vi; piÞ þ hsij;~viiCij ¼ h~f ;~vii;
bð~ui; riÞ ¼ 0;

h~ui;~siiC1
¼ h~gi;~siiC1

;

h~ui �~uj;~sijiCij ¼ 0

ð5Þ

for all ð~vi; ri;~si;~sijÞ 2 H1
C1
ðXiÞ � L2

0ðXiÞ �H�1=2ðC1Þ �H�1=2ðCijÞ and i = 1,2, . . . ,m. The problem in (5) is clearly equivalent
to (4) and therefore existence and uniqueness results for solutions of the system (5) are well known; see, e.g., [14–16].

Note that problem (5) can be discretized in different ways but our approach will be to pursue discretizations which can
assure regularity, accuracy, easy implementations and compatibility with the most common techniques used by fluid
dynamics codes. We remark that the computation of~sij 2 H�1=2ðCijÞ cannot be in general accurate, especially at corners
or singular points, due to its poor regularity [27]. The reader interested in the numerical computation of the stress vector
can consult [13]. However it is possible to compute ~sij from ~ui by using the concept of extended function and extended
domain X̂

i
of Xi as X ¼ X̂

i
. The solution ~ui over the domain Xi can be extended by using the standard theory [16]. In

the rest of the paper we write~ui to denote the function over Xi and ûi its extension to X. The extension of~ui over X satisfies
(4) over X � Xi and the stress~sij can be computed by

h~sij; v̂iiCij ¼ �aðûi; v̂iÞ � cðûi; ûi; v̂iÞ � bðv̂i; p̂iÞ þ h~f ; v̂ii ð6Þ
for all v̂i 2 H1

C1
ðX n XiÞ, which also gives an expression for the computation of the Lagrange multipliers~sij. The represen-

tation of ~sij in (6) can be used to speed up and simplify the solution of the system (4) by computing extended solutions
through the multigrid method.

3. Finite element discretization

3.1. Introduction

Let us introduce a finite element discretization in each subdomain Xi through the mesh parameter h which tends to zero.
We consider our discretized domain Xh to be partitioned into m non-overlapping subdomains Xi

h with boundary oXi
h. Now,

by starting at the multigrid coarse level l0, we subdivide Xi
h and consequently Xh into triangles or rectangles by families of

meshes T i;l0
h . At this coarse level l0, as at the generic multigrid level l, the triangulation over all Xi

h obeys to finite element
compatibility constraints along the interfaces Cij

h . Based on the simple element midpoint refinement different multigrid lev-
els can be built to reach the finite element mesh T i;l

h over the entire domain Xh at the top finest multigrid level nt. For details
on multigrid levels and their construction one may consult [8,28,31]. Now we have meshes at each multigrid level in a stan-
dard finite element fashion with compatibility enforced across all the element interfaces built over midpoint refinements. In
every macro domain Xi

h the Navier–Stokes equation can be solved over a different level li generating a solution mesh over
Xh consisting of different meshes over each subdomain. Let us denote Xi

hli
to be the subdomain i where the solution will be

computed at the multigrid level li, with hli denoting the maximum size of the triangulation of subdomain. It should be
noted that the multigrid levels at which the solution is computed over individual subdomains Xi

h and Xj
h may be different

from each other, with no compatibility enforced across the interface Cij
h .
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Finite element approximation spaces can be generated regularly, as function of the characteristic length hl over each
multigrid level l resulting in different approximation spaces over the solution mesh Xi

h. Note that on the solution mesh,
we compute the velocity field ~ui

h at the level l over Xi
hl

but the extended function ûi
h is defined over all Xh with the same

basis functions and over each level l in a standard and regular way. There may be parts of the domain where the solution
is not computed at the top level but a projection operator from the coarser level can always be used to approximate the
solution over the extended domain Xh and therefore an approximation to the extended function ûi

h is always available. This
extended function has the same value at those nodes in the coarser mesh that are included in the finest mesh. This is always
the case if the different levels are generated by successive midpoint refinements.

3.2. Multi-level approximation

Let us choose the families of finite-dimensional spaces Xhl � H1ðXhÞ and Shl � L2
0ðXhÞ. We make the following assump-

tions on Xhl and Shl for the extended functions defined over Xh (see, e.g., [15]):

(a) Approximation hypotheses: For each multigrid level l there exists an integer l1 and a constant C, independent of hl; û
and p, such that

inf
ûhl
2Xhl

k~u� ûhlk1 6 Chk
lk~ukkþ1 8~u 2 Hkþ1ðXÞ \H1

0ðXÞ; 1 6 k 6 l1;

inf
p̂hl
2Shl

kp � p̂hl
k 6 Chk

lkpkk 8p 2 H kðXÞ \ L2
0ðXÞ; 1 6 k 6 l1.

(b) Inf–sup or LBB condition: There exists a constant C 0, independent of hl, such that

inf
06¼q̂hl

2Shl

sup
0 6¼ûhl

2Xhl

Z
X

q̂hl
r � ûhl d~x

kûhlk1kq̂hl
k0

P C0 > 0
for all multigrid levels l 6 nt. This condition assures the stability of the Navier–Stokes discrete solutions.

(c) Let Phl ¼ Xhl jC, i.e., Phl consists of all the restrictions of functions belonging to Xhl to the boundary C. For the sub-

spaces Phl we assume the approximation property:
For each multigrid level l there exists an integer l1 and a constant C, independent of~s such that

inf
06¼~shl

2Phl

k~s�~shlk�1
2;C
6 Chk

lk~skk�1
2
8~s 2 Hk�1

2ðCÞ; 1 6 k 6 l1.
See [15,13] for details concerning the approximation on the boundary. With these hypotheses we can build regular con-
forming approximations over each grid while the approximate solution belongs to Xhl corresponding to the subdomain Xi

hl
.

Essential elements of a multigrid algorithm are the velocity and pressure prolongation operators and the velocity and
pressure restriction operators. Since we would like to use conforming Taylor–Hood finite element approximation spaces
we have the nested finite element hierarchies Xh0

� Xh1
� � � � � Xhl and Sh0

� Sh1
� � � � � Shl and the canonical prolonga-

tion maps can then be easily obtained. For details and properties one can consult [20,8] and citations therein.
To solve the coupled problem over the domains Xi

h (i = 1,2, . . . ,m) on the level li surrounded by the domains Xj
h with

j 2 Ii (Ii is the set of the neighboring regions of i), we discretize (5) to yield the following: Given~f 2 L2ðXÞ and~g 2 H1=2ðCÞ,
find ð~ui

hli
; pi

hli
;~sij

hli
Þ 2 Xhli

ðXi
hÞ � Shli

ðXi
hÞ � Phli

ðCij
h Þ satisfying the weak form of the Navier–Stokes equations

a ~ui
hli
;~vi

hli

� �
þ c ~ui

hli
;~ui

hli
;~vi

hli

� �
þ b ~vi

hli
; pi

hli

� �
þ ~sij

hli
;~vi

hli

D E
Cij

h

¼ ~f ;~vi
hli

D E
;

b ~ui
hli
; ri

hli

� �
¼ 0;

~ui
hli
;~si

hli

D E
Ci

1h

¼ ~gi
hli
;~si

hli

D E
Ci

1h

;

P li ;lk ~u
i
hli

� �
� P lj;lk ~u

j
hli

� �
;~sij

hlk

D E
Cij

h

¼ 0

ð7Þ

for all ð~vi
hli
; ri

hli
;~si

hli
;~sij

hlk
Þ 2 ½Xhli

\H1
C1
ðXi

hÞ� � Shli
ðXi

hÞ � Phli
ðCi

1h \ Xi
hÞ � Phlk

ðCij
h Þ for n = 1,2, . . . ,N and i = 1,2, . . . ,m where

j 2 I i; Ci
1h ¼ C1h \ oXi

h and lk = max{li, lj} over the multigrid levels available at the boundary Cij
h .

In order to have equivalence between the formulation in (5) and (7) the equation h~ui �~uj;~sijiCij ¼ 0 is replaced by
hKi

h~u
i
h � Kj

h~u
j
h;~s

ij
h iCij

h
¼ 0 where the operator Ki

h is the projection operator from the trace space Phi into itself and must
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converge to the identity operator in the continuous limit. In this particular multilevel formulation we write Ki
h ¼ Kli ;lk to

stress the two levels li and lk which are involved in the computation.
In order to ensure maximum accuracy the projection operator Kli;lk ð~uÞ projects the velocity from the level li to the level lk

which is the finest grid present on the boundary Cij
h . With this hypotheses, the Lagrange multipliers~sij

h can also be discret-
ized and computed on the finest grid available on Cij

h . Since the mesh on the multigrid are quite openly constructed, the
mesh between the domain Xi

h and the neighboring subdomain Xj
h can be quite different, as mentioned earlier. Moreover,

very fine meshes on the region of interest and coarse meshes elsewhere can be handled with little effort.
Introducing the corresponding finite element matrices the problem (7) is equivalent to

Al þ Cl BT
l Dl

Bl 0 0

El 0 0

0
B@

1
CA

~uhl

~phl

~sij
hl

0
B@

1
CA ¼

~F ðûi
hl
Þ

0
~T ðûj

hl
Þ

0
B@

1
CA; ð8Þ

where Dl is the surface integral matrix, El, the velocity constraint at the interface between different meshes, ~F ðûi
hl
Þ and

~T ðûj
hl
Þ are vectors that represent all terms that do not involve the unknown variables.

We solve the coupled system (8) using an iterative method. Multigrid solvers for coupled velocity/pressure system com-
pute simultaneously the solution for both pressure and velocity and they are known to be one of the best class of solvers for
laminar Navier–Stokes equations (see for examples [28,31]). An iterative coupled solution of the linearized and discretized
incompressible Navier–Stokes equations requires the approximate solution of large and sparse saddle point problems. In
order to optimally solve this system involving the unknown variable~sij

h , we choose Vanka smoother class of solvers which
can be considered as block Gauss–Seidel methods where one block consists of a small number of degrees of freedom (for
details see [32,21,22,31,23]). The characteristic feature of this type of smoother is that in each smoothing step a large num-
ber of small linear systems of equations has to be solved. In the Vanka-type smoother, a block corresponds to all degrees of
freedom which are connected to few elements. For example, for conforming finite elements the block may consist of all the
elements containing some pressure vertices. Thus, in this case a smoothing step with this Vanka smoother consists of a loop
over all the blocks, solving only the equations involving the degrees of freedom related to the elements that are around the
pressure vertices. The velocity and pressure variables are updated many times in one smoothing step.

The Vanka smoother employed to solve our problem involves the solution of the minimal number of degrees of freedom
for standard conforming Taylor–Hood finite elements but meets enough requirements of robustness. Over the internal
region Xi

h which is solved at the level li and for Taylor–Hood finite elements with linear pressure and the quadratic velocity
we solve for all the degrees of freedom of an element and the neighboring midpoints as shown in Fig. 1. Our block consists
of four vertex points and 12 middle points to be solved for a total of 36 unknowns. We have also used different blocks with
different performances but we have found this particular block to be very robust and reliable even at high Reynolds num-
bers. Examples of computations with this kind of solvers can be seen in [28,31]. The fact that the solution is searched locally
allows us to solve for~sij

h only near the surface with different meshes and to solve by standard techniques inside the domain.
Note that the solution for~sij

h may not be well represented in the case in which~sij
h is strictly in the space H�1=2ðCij

h Þ. Con-
sider Cij

h , the boundary between the domain Xi
h solved on the level li and Xj

h solved on the level lj. We focus our attention on
solution computation on the domain Xi

h. If singularities are present it is more convenient computing the~sij
h by using the

prolongation on the finest grid of the velocity ûi
hl

and pressure p̂i
hl

than solving the system directly. The local nature of
the solver allows us to solve exactly ûi

hl
inside the domain and match the prolongation ûi

hl
computed by a projection/pro-

longation from the level lj to the level li. The velocity computed by prolongation over Xj
h defines the boundary conditions

for the problem in Xi
h which does not need any Lagrange multiplier computations. We remark that the Lagrange multiplier

~sij
h does not disappear but is computed from the extended solutions.
Fig. 1. Relaxation block for the Vanka smoother for standard Taylor–Hood finite elements: four vertex points (square) and 12 middle points (circle).
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4. Computational experiments

In this section we present three computational experiments, which employ the multilevel method previously discussed in
a parallel multiprocessor architecture. The first example, a standard 2D benchmark computation of flow around a cylinder
[28], shows that accurate results can be achieved by using this multilevel method over nonmatching grids. In the second
example we show that the same method can be used to investigate domains with different scale geometries where different
resolutions are needed. In the third example we show that this multilevel strategy coupled with Vanka-type solvers with
parallel implementation can be computationally efficient by reducing the cpu time.

4.1. Numerical experiment 1

The possibility to compute flows over different regions by using different nonmatching meshes is explored in this first
test. This involves a standard benchmark application of flow around a cylinder with circular cross-section. The geometry,
as shown in Fig. 2, and the boundary conditions for this application are standard and can be found in [28]. The inflow
condition is

~uð0; yÞ ¼ ð4U myðH � yÞ=H 2; 0Þ
on C1 where the maximum velocity Um equals 0.3 m/s and H = 0.41 m for a Reynolds number equal to 20. The boundary
conditions on C2, C3 and C5 are Dirichlet boundary conditions. In this test we compute and compare the drag and the lift
force for matching and nonmatching grids in order to show the performance of the coupling technique for nonmatching
grids. The drag and the lift forces are defined by [28]

F D ¼
Z

C5

l
o~ut

o~n
ny � pnx

� �
dS; F L ¼ �

Z
C5

l
o~ut

o~n
nx þ pny

� �
dS; ð9Þ

where~ut is the tangential velocity,~n ¼ ðnx; nyÞ is the inward unit norm and~t ¼ ðny ;�nxÞ the unit tangent. The drag and lift
coefficients are

CD ¼
2F D

q�u2D
; CL ¼

2F L

q�u2D

with the mean velocity �u ¼ 2~uð0;H=2Þ=3. As a further reference value the pressure difference DP = P(xa,ya) � P(xe,ye) is
defined, where the front and the end point of the cylinder (xa,ya) = (.15, .2) and (xe,ye) = (.25, .2) respectively [28].

In order to show the advantage of the use of nonmatching methods proposed we discretize the domain Xh in two main
subdomains X1 and X2 as shown in Fig. 2. We discretize Xh at level l0 with coarse triangulation and we define the subse-
quent levels l1, l2, l3 and l4 by standard midpoint refinements. We remark that over C5 the midpoint refinement must be
performed to conserve the form of the circular boundary. The mesh is a coarse mesh of isoparametric quadrangular finite
elements for Q2/Q1 velocity/pressure representation. The computations in the region close to the cylinder X1 should be
accurate and therefore must be solved on the finest grid l4. The levels l4, l3 or l2 are considered for computations over
X2. Fig. 3 shows, from the top to the bottom, the mesh grid over the finer level l4 denoted as case A and the mesh grid
for the domain-decomposition problem when the level l3 and the level l2 are coupled in the subregions X2 (cases B and
C). These decompositions do not introduce any supplementary work since they are strictly embedded in the multigrid con-
struction. With Vanka-type solvers we can partition the domain and the processor load at the element block level and
therefore in a very efficient and flexible way. The computations are performed on a multiprocessor machine but in this
example we focus on the accuracy of the results. The results are reported in Table 1 and can be compared with the existing
ones in [28,18]. The test compared in this experiment is the two-dimensional steady case. The focus in this paper is not on
the accuracy of the quantities but on the possibility to reach the same results by using coarse meshes in parts of the domain
which are not of interest. In order to compare these results the polygon approximating cylinder surface is used as cylinder
OUTLETINLET

0.16m

0.15m

0.15m

Γ

ΓΓ1

Γ

2
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1 2Ω Ω

Fig. 2. Geometry of the numerical experiment 1.



Fig. 3. Different subgrid configurations. Mesh for coupled levels l4 � l4 on the top (case A), for coupled levels l4 � l3 in the middle (case B) and for coupled
levels l4 � l2 on the bottom (case C).

Table 1
Results for the computational experiment 1

Grids Unknowns CD CL DP Rel. cpu time

l4 � l4 112,704 5.59012 0.01100 0.11759 1
l4 � l3 39,204 5.59015 0.01109 0.117604 0.391
l4 � l2 20,682 5.59502 0.01123 0.117255 0.1875
l3 � l3 28,512 5.62150 0.01309 0.115156 0.285
l2 � l2 7296 5.63402 0.01411 0.115848 0.071
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surface at the lower levels. For this reason some small differences between these results and those in [28,18] due to the
refinement algorithm of the cylinder surface for different mesh resolutions can be observed. The computation of case A
on level l4 � l4 gives results that confirm with those in literature and can be considered as the benchmark result for the
comparison with the multilevel computation of cases B and C. We notice that the results in Table 1 over the level
l4 � l3 (case B) and l4 � l2 (case C) are very close to those obtained at the level l4 � l4. The region around the cylinder
has the same grid level and therefore almost the same accuracy is expected for the different multilevel computations. How-
ever the number of nodes by using nonmatching grid decreases enormously and so the necessary cpu time. It is not easy to
compare the cpu time due to the parallel implementation but the computation time on the level l4 � l4 is approximately five
times this of case C. The computations on level l3 � l3 and l2 � l2 in Table 1 show different values from the benchmark
results over l4 � l4 and clearly suggest that the nonmatching levels l4 � l3 and l4 � l2 can help to achieve better accuracy
than this reached by using low level uniform grids.

4.2. Numerical experiment 2

In the second numerical experiment we illustrate an example in which the multilevel method can be efficiently applied to
problems in fluid dynamics. We consider challenging domains where small regions of fluids are coupled with large ones, for
example the geometry in Fig. 4 where a L-shape domain X0 is shown with eight unitary small square cavities Xi, i = 1, . . . , 8.
Here the use of a single grid level leads to a very cumberstone implementation since the cavity flow must be solved with
different resolution. As in the previous test the first multigrid level l0 is the coarse mesh designed to contain all the relevant
information such as boundary conditions and geometric details. The boundary conditions for this problem are inflow
boundary conditions on the bottom of the first branch with parabolic profile (max vel. 1 m/s) and outflow boundary con-
ditions on C2. Dirichlet boundary conditions are applied in the rest of the boundary. The computations are perform in



Fig. 4. Geometry for the numerical experiment 2 on the left and domain decomposition with coupled levels l4 � l3 (case B) on the right.
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laminar regime for Reynolds number equals 20 and rectangular finite elements Q2/Q1 velocity/pressure are used. The other
levels li (i = 1,2,3,4) are generated by midpoint refinement. The computations in the cavity regions Xi (i = 1,2,3, . . . , 8)
should be accurate and therefore solved on the finest grid l4. The levels l4, l3, l2 or l1 are considered for computation over
X0. In Figs. 4 and 5 we can see the multilevel configurations on nonmatching grids considered in this test when the mesh
level l4 over the cavities Xi is coupled with the mesh levels l3, l2 and l1 over X0 (cases B, C and D respectively). The solution,
over the uniform level l4 (case A), is taken as reference solution and is obtained by standard V-cycle multigrid with residual
norm in velocity and pressure approximately 10�13. The reference velocity is 1 m/s which is the maximum velocity of the
parabolic inflow profile at the inlet. The procedure computes the Lagrange multipliers~sij

h , the boundary stresses, implicitly.
In this case the solution~uhli

is projected by the standard finite element projection operator (the same of the standard mul-
tigrid) over the finest grid at level l4 obtaining the extended solution for ûh over X0. The extended solution generates the
boundary conditions for the computation of the solution on the finest grid, which is the union of all Xi (i = 1,2, . . . , 8).

The solution along the channel centerlines is reproduced accurately in both branches for all cases A, B, C and D. The
solution over all the regions Xi for i = 1,2, . . . , 8 cannot be captured with a low resolution mesh (for example level l2) and
therefore the multilevel technique becomes a powerful tool in such configurations. Even with very coarse mesh in the chan-
nel the fine grid on the cavity allows a good and accurate simulation of the cavity flows. As example in Fig. 6 the v-com-
ponent of the velocity field is plotted as across the cavities in the regions X1, X2 as a function of the x-coordinate and X6, X7

as a function of the y-coordinate from the top to the bottom and from left to right. The velocity field computations over the
different configurations A, B and C cannot be distinguished. The solution for the case D shows that the solution is starting
to be different due to the very coarse mesh matching.
Fig. 5. Multilevel decomposition with coupled levels l4 � l2 (case C) on the left and with coupled levels l4 � l1 (case D) on the right.



0 0.5 1 1.5 2 2.5 3

Z

0

2

4

6

8

V

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

0 0.5 1 1.5 2 2.5 3

Z

0

2

4

6

8

V

0 0.5 1 1.5 2 2.5 3

Z

-0.4

-0.3

-0.2

-0.1

0

0.1

V

0 0.5 1 1.5 2 2.5 3

Z

-0.25

-0.2

-0.15

-0.1

-0.05

0

V

Fig. 6. V-component along the midline in the cavity regions X1 (top left), X2 (top right) as a function of the x-coordinate and X6 (bottom left), X7 (bottom
right) as a function of the y-coordinate for the different cases A, B, C and D.

4612 E. Aulisa et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 4604–4616
4.3. Numerical experiment 3

In this third numerical experiment parallel computations of a flow through a L-shape channel are investigated. The
inflow is a parabolic profile with maximum velocity equal to 1 m/s along the bottom side of the element 4–3. Outflow
boundary conditions are prescribed at the outlet, the right side of the elements 31–32 and Dirichlet boundary conditions
are applied to the rest of the boundary. All the computations are performed at 50 Reynolds number in the steady laminar
regime. This multilevel non matching grid computation can be used to optimize the parallel implementation since different
nonmatching grids can be used in different parts of the domain where they are needed. For the application of the multilevel
decomposition solution with multiprocessor architecture the processor domain decomposition can be done in several ways.
However it is convenient to introduce a decomposition strictly embedded in the multigrid technique that does not introduce
any supplementary work by using one processor over suitable block of unknowns. As one can see in Fig. 7 an L-shaped
channel Xh is divided in four subdomains Xi (i = 1,2,3,4). On the coarse grid the subdomain X1 consists of four elements
(1–4), X2 consists of six elements (17–22), X3 of twelve (5–16) and X4 of ten (23–32). Again rectangular finite elements for
Q2/Q1 velocity/pressure are used and the finer levels li (i = 1,2,3) are generated by midpoint refinements. The computations
in the inlet region X1 and in the region X3 should be accurate and therefore solved on the finest grid l3. The levels l3, l2, l1 or
l0 are considered for computations over X2 [ X4.

Computation on the finer level l3 over all the domain is denoted by case A and it is considered as benchmark case. In
Fig. 7 on the right, the mesh grid for the multilevel problem over level l3 in the subregions X1 [ X3 and over level l2 in
X2 [ X4 (case B) is shown. Fig. 8 shows on the left the mesh level l3 over X1 [ X3 coupled with the mesh level l1 over
X2 [ X4 (case C) and on the right the level l3 over X1 [ X3 coupled with level l0 over X2 [ X4 (case D). These decomposi-
tions are among the numerous possibilities but they do not introduce any supplementary work since they are strictly
embedded in the multigrid technique.

With Vanka-type solvers we can partition the domain and the processor load at the coarse element block level and there-
fore in a very efficient and flexible way. The processors are distributed in different ways for different cases in order to bal-
ance the load and to speeding up the computations. In case A all the processors are distributed uniformly over the 32
elements. To optimize the communication time we use only 16 processors and assign the element pairs along the L-shape



Fig. 7. Element configuration for the numerical experiment 3 at level l0 on the left and mesh for coupled level l2 � l3 (case B) on the right.

Fig. 8. Different subgrid configurations. Mesh for coupled levels l1 � l3 on the left (case C) and for coupled levels l0 � l3 on the right (case D).
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to only one processor. We compute and compare the solution of the problem obtained by using 1, 2, 4, 8, and 16 processors
respectively. For the cases B, C and D the same distribution of processors, as in the case A, is considered during the V-cycle
on the coarse grid (levels l2, l1 and l0) but we rearrange the processor during the computation on the fine grid (level l3). The
computation on level l3 is over X1 [ X3 only and therefore the other processors should be rearranged over this domain.
Only 16 elements are available in this case: one for each processor. In the configuration proposed in the case A the solution
is obtained at the level l3 by a standard V-cycle multigrid over all the available levels and it is stopped when the residual of
the linear system is 10�13 for the velocity and pressure. In the cases B, C and D the multigrid V-cycle is regularly applied
over the coarse grid at the level l2, l1 and l0 respectively.

In the Vanka relaxation approach the solution of the multigrid algebraic system requires the solution, block by block, of
several small algebraic systems and the iterative update of the solution. We call the solution of this small algebraic systems
a block relaxation since this operation gives the solutions and the new update for the block unknowns. Since our solving
block is based on an element the update between different processor regions can be performed in many ways. In order to
minimize the communication among processors the necessary data exchange for the update during the global relaxation
can be performed after a fixed number of block relaxations. In our computations we have explored the different possibilities
by computing the two limiting cases: the data exchange is performed after every element block relaxation or the data
exchange is performed at the end of a global relaxation (grid relaxation). In Fig. 9 we show the cpu time (on the left)
and the relative speeding up (on the right) for the parallel computations for different domain decomposition configurations
(cases A, B, C and D) in the limiting case in which the communication of data is performed at the end of each block
relaxation. The case A, in which the mesh is uniform over all the domain, is taken as comparison case for speeding up
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Table 2
Number of cycles to reach convergence

No. of cpu 1 2 4 8 16

l4 � l4 11 11 11 11 11
l4 � l3 12 12 12 12 12
l4 � l2 12 12 12 12 12
l4 � l1 13 13 13 13 14
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computations. We note that both the cpu time and the relative speeding up scale with the number of processors. The num-
ber of V-cycles needed to compute the steady solution are reported in Table 2. Each V-cycle consists of four pre-smoothing
and post-smoothing iterations. The number of V-cycle remains basically the same due to good communication among the
processors. We note also that the communication time is negligible in almost all these cases. The updating of the solution
after a single block relaxation appears to be important for a very fast and regular convergence of the multigrid. In fact the
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situation is different in the opposite limiting case where the data exchange is performed at the end of a global relaxation. In
this case both the cpu time and the relative speeding up do not scale with the number of processors and reach saturation.

In Figs. 10 and 11 the u-component of the extended velocity field for cases A, B, C and D is plotted as a function of the
centerline coordinate y across the first branch of the L-shape channel and as a function of the centerline coordinate x across
the second branch of the L-shape channel, respectively. The computations over the different configurations A, B and C
cannot be distinguished. The solution for the case D shows a different pattern in the region X4 due to the very coarse mesh.

5. Conclusion

In this paper, a multigrid approach to domain decomposition for solving Navier–Stokes equations has been presented
and tested to various benchmark applications. Our computational results clearly indicate that the domain decomposition
herein used in conjunction with the multigrid method, is a robust and reliable technique for solving the Navier–Stokes
system.

The method developed in this paper leads to a fast and flexible algorithm to compute solutions in different domains over
different multigrid levels efficiently. The results are very encouraging and the method has prompted us to investigate more
open questions.
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