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Abstract

In this paper, we develop a nonconforming finite element methodology using a three-field formulation to analyze a

fluid–structure interaction problem. The methodology is used to couple a Lagrangian model describing the structure

with the arbitrary Lagrangian–Eulerian strategy used to describe the fluid in order to simulate a full unsteady physical

phenomenon. Consistency error estimates are obtained which show that the numerical scheme employed yields a first

order approximation for the solution to the fluid–structure interaction problem. Finally, we present a discrete energy

estimate to demonstrate the stablity of the proposed method.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An efficient solution to a fluid–structure interaction problems is still a challenging one in computational

mathematics. Direct numerical solution of the highly nonlinear equations governing even the most simpli-

fied two-dimensional models of fluid–structure interaction requires that both the flow field and the domain

shape be determined as part of the solution, since neither is known a priori. Previous algorithms have

decoupled the solid and the fluid mechanics, solving for each separately and converging iteratively to a solu-

tion which satisfies both. However, in order to predict the dynamic response of a rigid or flexible structure
in a fluid flow, ideally the equations of motion of the structure and the fluid should be solved

simultaneously.
0045-7825/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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While solving the fluid–structure interaction problem as a coupled problem, it is important to realize sev-

eral key facts:

• The fluid produces tractions that deform the structure. These deformations alter the flow field and hence,

result in modified fluid tractions.
• The structural equations are usually formulated with material (Lagrangian) coordinates, while the fluid

equations are typically written using spatial (Eulerian) coordinates.

• The nodes on the fluid mesh are attached to the surface of the structure and have to move as the struc-

ture deforms.

Hence, the solution of the coupled fluid–structure dynamic equations can become very complicated and

also can lead to severe mesh distortions when the structure undergoes large deformation. A variety of ap-

proaches have been developed to solve fluid–structure interaction problems, including the co-rotational ap-
proach [11,16], dynamic meshes [2], parallel methods [15] and the arbitrary Lagrangian–Eulerian

formulation [9]. A more general overview of numerical methods to study fluid–structure interaction prob-

lems can be found in [17].

To support a flexible meshing procedure for a fluid–structure interaction problem, it is crucial that an

efficient method be employed to join the fluid and structure sub-meshes together, even though the finite ele-

ment nodes of the fluid and structure at the common interface may not, in general, be coincident. To

accomplish this one may employ a Lagrange multiplier to take care of the continuity constraints, i.e.,
uS � uF ¼ 0 on CSF;
where CSF = oXS \ oXF is the interface between the fluid domain XF and structure domain XS and uS, uF are

the values of the test or trial function u on CSF from the two sides. Here uF may represent the velocity of the

fluid and uS the time derivative of the displacement of the structure. With such a technique, the above equa-

tion is enforced only weakly, with the jumps uS � uF being made orthogonal to a space of Lagrange mul-

tipliers on CSF. (An alternative method, not involving Lagrange multipliers, could be based on hanging

nodes, see, e.g., [8,18].) The mortar finite element method (see, e.g., [3–5,10,19,21,22,24] and the references
therein) is one example of a Lagrange multiplier technique. These methods are becoming increasingly pop-

ular as specialized domain decomposition techniques for treating second-order partial differential equations

on any type of domain, with very few restrictions on the grid related to the discretization procedure. One

can also employ much more general three-field methods, where one also has a third field z on the interface.

This variable corresponds to the exact solution on CSF, and one now introduces two Lagrange multipliers

to deal with the constraints
uS � z ¼ 0; uF � z ¼ 0 on CSF.
See, e.g., [1,6,20] for variants of this idea.

The purpose of our paper is three-fold. First, we present a nonconforming finite element formulation for

a fluid–structure interaction model problem using a three-field approach. Secondly, we prove a consistency

result satisfied by the finite element solution for the numerical scheme presented. Finally, we present a dis-

crete energy estimate for the proposed method which confirms the stability of our scheme.
2. Model problem

Let x ¼ ðx1; x2Þ 2 R2. We consider an initial configuration of two rectangular domains X0
F ¼ ½0; 1� � ½0; 1�

and X0
S ¼ ½1; 2� � ½0; 1� coincident at the initial interface c0 ¼ fx : x1 ¼ 1; 0 6 x2 6 1g. Assuming that a vis-

cous incompressible fluid occupies XF(t) while an elastic structure occupies XS(t), the interface between the
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two may move as the system evolves (see Fig. 1). At any instance t P 0, we model the change in fluid veloc-

ity u ¼ ðu1; u2Þ 2 R2 and pressure p̂ using the Navier–Stokes equations,
X2
i¼1

o

oxi
lF

ouj
oxi

þ oui
oxj

� �� �
� op̂
oxj

¼ qF

ouj
ot

þr � ðujuÞ � fj

� �
; ð1Þ
for j = 1,2 and "x 2 XF(t). Here, lF is the dynamic viscosity of the fluid, qF is the fluid density, and

f = (f1, f2) is the applied force. Additionally, due to the incompressible nature of the fluid, $ Æ u = 0. Apply-

ing the incompressibility condition, Eq. (1) becomes for j = 1,2,
ouj
ot

� mDuj þ u � ruj þ
op
oxj

¼ fj; ð2Þ
"x 2 XF(t), tP 0, where m ¼ lF
qF

is the kinematic viscosity and p ¼ p̂
qF
.

Now let d represent the displacement of the structure from its initial position. Then we can model the

change in d using only the initial solid domain X0
S. The structure is modelled via the equations
X2
i¼1

o

oxi
lS

odj

oxi
þ odi

oxj

� �� �
þ k

o

oxj
ðr � dÞ ¼ qS

o2di

ot2
� gj

� �
ð3Þ
for j = 1,2 and 8x 2 X0
S; where k and lS are the Lamé coefficients, qS is the solid density, and g = (g1,g2) is

the applied load on the structure. Letting l = lS and e ¼ lþk
qS
, Eq. (3) becomes for j = 1,2,
o2dj

ot2
� lDdj � e

o

oxj
ðr � dÞ ¼ gj; ð4Þ
8x 2 X0
S. On the left boundary of XF(t), we assume a no-slip condition. On the upwind boundary

{x : 0 6 x1 6 1, x2 = 0}, we fix the interface c at its original position and assume zero velocity. Assuming

that the velocity on the downwind boundary CDW is known and in the downwind direction, the boundary
conditions for u are given by
u ¼
0; x 2 oXFðtÞnfc [ CDWg;
ð0; ~uÞ; x 2 CDW.

�

We also assume homogeneous Dirichlet boundary conditions on oXS(t)nc. On the interface, we enforce
continuity of the velocities, i.e.,
ujc ¼
od

ot

����
x1¼1

; ð5Þ
as well as continuity of flux,
kFjc þ kSjc0 ¼ 0; ð6Þ
Ω ΩF S

0
0

t
Ω Ω

γ

F S (t)(t)

ΓDW

γ
0

Fig. 1. Deformation of the fluid and solid sub-domains over time.
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where kðjÞF ¼ mðruj � nÞ � pnj is evaluated on c, the interface, and kðjÞS ¼ lðrdj � nÞ þ eðr � dÞnj is evaluated at

the original position of the interface since d represents the displacement from the initial position, n = (n1,n2)

being the appropriate outward normal vector.

In order to account for the changing nature of our fluid domain XF(t), we wish to define a dynamic mesh

when discretizing in space. However, to avoid extreme mesh distortion near the interface, we also choose to
move the mesh independently of the fluid velocity on the interior of XF(t). Such a scheme, called an arbi-

trary Lagrangian–Eulerian formulation, is commonly applied when studying fluid–structure interaction

[9,13,14]. In particular, we allow mesh nodes to move only in the x1-direction in order to facilitate compu-

tations with nonconforming discretizations.

Let x2 be a fixed value from {x2 : 0 < x2 < 1}. We want the grid velocity of any node along the horizontal

line segment at x2 in XF(t) to satisfy w = 0 whenever x1 = 0 and w ¼ _c at the interface. If c(t, x2) represents
the x1-coordinate of the interface, then let
wðt; xÞ ¼ x1
cðt; x2Þ

_cðt; x2Þ.
The associated characteristic variable must satisfy
d

dt
xðsÞ1 ðt; nÞ ¼ wðt; xðsÞ1 ðt; nÞ; x2Þ;

xðsÞ1 ðs; nÞ ¼ n
"n 2 (0,c(s,x2)). Thus,
xðsÞ1 ðt; nÞ ¼ n
cðt; x2Þ
cðs; x2Þ

.

Let vðt; n; x2Þ ¼ uðt; xðsÞ1 ðt; nÞ; x2Þ. Then
ov

ot
ðt; n; x2Þ ¼

ou

ot
ðt; xðsÞ1 ðt; nÞ; x2Þ þ wðt; xðsÞ1 ðt; nÞ; x2Þ

ou

ox1
ðt; xðsÞ1 ðt; nÞ; x2Þ ð7Þ
so Eq. (2) becomes for j = 1,2,
ovj
ot

� mDuj þ ðu1 � wÞ ouj
ox1

þ u2
ouj
ox2

þ op
oxj

� �
ðt; xðsÞ1 ðt; nÞ; x2Þ ¼ fjðt; xðsÞ1 ðt; nÞ; x2Þ. ð8Þ
3. A nonconforming finite element method

Choose Dt > 0 and let tn = nDt, /n(x) = /(tn,x). We subdivide X0
F and X0

S into triangulations via regular

[7] families of meshes. It should be noted that these grids are independent with no compatibility enforced

across the interface c0, as in Fig. 2.

Assuming a piecewise linear approximation Cn for the interface c at t = tn, we wish to find finite element

approximations for un, pn, and dn, namely Un, Pn, and Dn, using a weak formulation for the fluid–structure

interaction problem. Define Xn
F to be the approximation of XF(t

n) using Cn. An approximation for the char-

acteristic curve xðsÞ1 ðt; nÞ is, for any fixed x2, X
n
1ðtÞ ¼ Xn

1 þ W nðXn
1; x2Þðt � tnÞ, 8Xn

1 2 ð0;Cnðx2ÞÞ, t 2 [tn,tn+1],

where
W nðXn
1; x2Þ ¼

Xn
1

Cnðx2Þ
Un

1ðCnðx2Þ; x2Þ
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Fig. 2. Evolution of a nonconforming mesh.
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and Cnþ1ðx2Þ ¼ Cnðx2Þ þ DtUn
1ðCnðx2Þ; x2Þ. Thus, Xnþ1

1 ¼ Xn
1 þ W nðXn

1; x2ÞDt ¼ Xn
1ðtnþ1Þ, which we will use to

move the mesh nodes. We then discretize the acceleration by
ouj
ot

ðt; xðsÞ1 ðt; nÞ; x2Þ �
1

Dt
ðUnþ1

j ðXnþ1
1 ; x2Þ � Un

j ðXn
1; x2ÞÞ.
Let U
nþ1

j ðXn
1; x2Þ ¼ Unþ1

j ðXn
1 þ W nðXn

1; x2ÞDt; x2Þ ¼ Unþ1
j ðXnþ1

1 ; x2Þ. Then a discretization of (8) is given by
1

Dt
ðUnþ1

j � Un
j Þ � mDU

nþ1

j þ ðUn
1 � W nÞox1U

nþ1

j þ Un
2ox2U

nþ1

j þ oxjP
nþ1 ¼ �f

nþ1

j ; ð9Þ
for j = 1,2, where P and �f j are defined in the same way as Uj. Similarly, a discretization of (4) is
1

ðDtÞ2
ðDnþ1

j � 2Dn
j þ Dn�1

j Þ � lDDnþ1
j � eoxjðr �Dnþ1Þ ¼ gnþ1

j ð10Þ
for j = 1,2.

For any connected bounded polygonal domain X 2 R2 let the boundary oX ¼ oXD [ oXN (where oXD is

the Dirichlet boundary and oXN = oXnoXD is the Neumann boundary). Using standard Sobolev space

notation, let H 1
DðXÞ ¼ fu 2 H 1ðXÞ j u ¼ 0 on oXDg, where we are using Hk(X) to denote the space of func-

tions with k generalized derivatives on X. We set L2(X) = H0(X). For any portion of the boundary c � oX,
the space H1/2(c) is the set of traces over c of all the functions of H1(X) and H�1/2(c) is its topological dual
space. For any functional space X(X), the bold symbol X(X) stands for the product X(X) · X(X) so that, for

instance, H1
DðXÞ ¼ H 1

DðXÞ � H 1
DðXÞ.

We then choose finite dimensional subspaces Vn
F � H1

DðXn
FÞ, W n

F � L2
0ðX

n
FÞ, Vn

S � H1
DðX0

SÞ,
Mn

F � H�1
2ðCnÞ, Mn

S � H�1
2ðC0Þ and Yn � H

1
2ðCÞ, where C is an interface space corresponding to the traces

of the true solution. Let us now define the global finite element space to be
Xn ¼ Vn
F � W n

F � Vn
S �Mn

F �Mn
S � Yn.
We can then rewrite the Eqs. (9) and (10) along with the continuity constraints (5) and (6) in the follow-

ing fully-coupled three-field variational form. Find ðUnþ1
; P

nþ1
;Dnþ1;Knþ1

F ;Knþ1
S ;Znþ1Þ 2 Xn such that
anFðU
nþ1

;wFÞ þ bnFðP
nþ1

;wFÞ þ cnFðU
nþ1

;wFÞ þ Bn
FðK

nþ1
F ;wFÞ ¼ F n

FðwFÞ; ð11Þ

bnFðwD;U
nþ1Þ ¼ 0; ð12Þ

aSðDnþ1;wSÞ þ cnSðD
nþ1;wSÞ þ BSðKnþ1

S ;wSÞ ¼ F n
SðwSÞ; ð13ÞZ

Cn
ðUnþ1 � Znþ1Þ �W1 ds ¼ 0; ð14ÞZ

C0

ðDnþ1 � DtZnþ1Þ �W2 ds ¼
Z
C0

Dn �W2 ds ð15Þ
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and
�
Z
Cn
Knþ1

F �Udsþ
Z
C0

Knþ1
S �Uds

� �
¼ 0 ð16Þ
8ðwF;wD;wS;W1;W2;UÞ 2 Xn, where
anFðu;wFÞ ¼ m
Z
Xn
F

X2
j¼1

ðruj � rwðjÞ
F ÞdA;

bnFðp;wFÞ ¼ �
Z
Xn
F

pðr � wFÞdA;

cnFðU
nþ1

;wFÞ ¼
Z
Xn
F

X2
j¼1

U
nþ1

j

Dt
þ ðUn

1 � W nÞox1U
nþ1

j þ Un
2ox2U

nþ1

j

" #
wðjÞ

F dA;

Bn
FðkF;wFÞ ¼ �

Z
Cn

kF � wFð Þds;

F n
FðwFÞ ¼

Z
Xn
F

�f
nþ1 þ 1

Dt
Un

� �
� wF dA;

aSðd;wSÞ ¼
Z
X0
S

l
X2
j¼1

ðrdj � rwj
SÞ þ �ðr � dÞðr � wSÞ

" #
dA;

cnSðdnþ1;wSÞ ¼
Z
X0
S

1

ðDtÞ2
dnþ1

 !
� wS dA;

BSðkS;wSÞ ¼ �
Z
C0

ðkS � wSÞds;

F n
SðwSÞ ¼

Z
X0
S

gnþ1 þ 1

ðDtÞ2
ð2Dn �Dn�1Þ

 !
� wS dA.
The next step in the finite element procedure is to define basis functions [23] for each of the finite dimen-

sional spaces introduced and express the unknowns ðUnþ1
; P

nþ1
;Dnþ1;Knþ1

F ;Knþ1
S ;Znþ1Þ as linear combina-

tions of the respective basis functions. Choosing the test functions to be basis functions themselves

then converts the above system of integral equations into a linear system that we solve for the appropriate
coefficients in the linear combinations.

Hence, for each time step the three-field formulation developed allows us to simultaneously solve for the

fluid velocity and structure displacement. The new interface position is then extrapolated and used to build

the new mesh on the deformed fluid domain.
4. Consistency error

Let �/
nþ1ðxÞ ¼ /nþ1ðx1 þ wnðxÞDt; x2Þ for any function / defined on XF(t

n). If necessary, we extend �/
nþ1

analytically to Xn
F, shown in Fig. 3. Next, let
�x ¼ ðx1 þ wnðxÞDt; x2Þ 8x 2 Xn
F.
Then �/
nþ1ðxÞ ¼ /nþ1ð�xÞ.



ΩF (tn)
ΩF

n \ Ω F (tn)

Fig. 3. Extension to Xn
F.
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Theorem 1. Let
enþ1
f ðxÞ ¼

X2
j¼1

1

Dt
ð�unþ1

j � unj Þ � mD�unþ1
j þ ðun1 � wnÞox1�unþ1

j þ un2ox2�u
nþ1
j þ oxj�p

nþ1

� �
ðxÞ �

X2
j¼1

�f
nþ1

j ðxÞ.
If u, p, and c are sufficiently smooth, then $C such that
kenþ1
f ðxÞkL1ðXn

F
Þ 6 CDt.
Before proving this theorem, a few lemmas are needed.

Lemma 2. Let
enþ1
1 ðxÞ ¼

X2
j¼1

1

Dt
ð�unþ1

j � unj ÞðxÞ � otunþ1
j ð�xÞ � wnðxÞox1unþ1

j ð�xÞ
� �

.

If u is sufficiently smooth, then $C1 such that
kenþ1
1 ðxÞkL1ðXn

F
Þ 6 C1Dt.
Proof. Using unþ1
j ð�xÞ ¼ vnþ1

j ðxÞ; unj ðxÞ ¼ vnj ðxÞ and (7) we have,
enþ1
1 ðxÞ ¼

X2
j¼1

1

Dt
ð�unþ1

j � unj ÞðxÞ � otvnþ1
j ðxÞ

� �
¼
X2
j¼1

1

Dt
ðvnþ1

j � vnj ÞðxÞ � otvnþ1
j ðxÞ

� �

¼ Dt
2

X2
j¼1

ottvnþ1
j ðxÞ þ OðDt2Þ.
Employing the triangle inequality, the result is obtained. h

Lemma 3. Let
enþ1
2 ðxÞ ¼ m

X2
j¼1

Dunþ1
j ð�xÞ � D�unþ1

j ðxÞ
h i

.

If u and c are sufficiently smooth, then $C2 such that
kenþ1
2 ðxÞkL1ðXn

F
Þ 6 C2Dt.
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Proof. Note that
D�unþ1
j ðxÞ ¼ Dunþ1

j ðx1 þ wnðxÞDt; x2Þ ¼ r � ox1u
nþ1
j ð�xÞ 1þ _cðt; x2Þ

cðt; x2Þ
Dt

� �
; ox2u

nþ1
j ð�xÞ

� �

¼ Dunþ1
j ð�xÞ þ 2o2x1u

nþ1
j ð�xÞ _cðt; x2Þ

cðt; x2Þ
Dt þ OðDt2Þ;
so
enþ1
2 ðxÞ ¼ � 2m

X2
j¼1

o2x1u
nþ1
j ð�xÞ _cðt; x2Þ

cðt; x2Þ

 !
Dt þ OðDt2Þ.
Under the assumption that the fluid–structure interface does not coincide with the left boundary of

XF(t), the triangle inequality completes the proof. h

Lemma 4. Let
enþ1
3 ðxÞ ¼

X2
j¼1

wnðxÞox1unþ1
j ð�xÞ þ ðun1 � wnÞðxÞox1�unþ1

j ðxÞ þ un2ðxÞox2�unþ1
j ðxÞ � ðunþ1 � runþ1

j Þð�xÞ
� �

.

If u and c are sufficiently smooth, then $C3 such that
kenþ1
3 ðxÞkL1ðXn

F
Þ 6 C3Dt.
Proof. Note that
enþ1
3 ðxÞ ¼

X2
j¼1

wnðxÞ ox1u
nþ1
j ð�xÞ � ox1�u

nþ1
j ðxÞ

� �
þ ðun � r�unþ1

j ÞðxÞ � ðunþ1 � runþ1
j Þð�xÞ

� �
.

It is easily seen that
ox1�u
nþ1
j ðxÞ ¼ ox1u

nþ1
j ð�xÞ 1þ _cðt; x2Þ

cðt; x2Þ
Dt

� �
and
ðun � r�unþ1
j ÞðxÞ ¼ ½unðxÞ � runþ1

j ð�xÞ� þ un1ðxÞox1unþ1
j ð�xÞ _cðt; x2Þ

cðt; x2Þ
Dt.
Hence,
enþ1
3 ðxÞ ¼

X2
j¼1

�wn _cðt; x2Þ
cðt; x2Þ

Dt þ un1ðxÞox1unþ1
j ð�xÞ _cðt; x2Þ

cðt; x2Þ
Dt

� �
þ
X2
j¼1

½unðxÞ � unþ1ð�xÞ� � runþ1
j ð�xÞ

� �
.

Now, noting that unðxÞ � unþ1ð�xÞ ¼ OðDtÞ and applying the L1 norm gives the desired result. h

Proof of Theorem 1. Note that
�f
nþ1

j ðxÞ ¼ f nþ1
j ð�xÞ ¼ otunþ1

j ð�xÞ � mDunþ1
j ð�xÞ þ ðunþ1 � runþ1

j Þð�xÞ þ oxjp
nþ1ð�xÞ.
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Hence,
enþ1
f ðxÞ ¼ enþ1

1 ðxÞ þ enþ1
2 ðxÞ þ enþ1

3 ðxÞ þ
X2
j¼1

½oxj�pnþ1ðxÞ � oxjp
nþ1ð�xÞ�.
Using Lemmas 2–4 and observing that
oxj�p
nþ1ðxÞ � oxjp

nþ1ð�xÞ ¼ OðDtÞ;
the proof is easily completed. h

For the structure, a similar theorem can be proved for the consistency error associated with the numer-

ical scheme in (10). We state in the following theorem the main result.

Theorem 5. Let
enþ1
s ðxÞ ¼

X2
j¼1

1

Dt2
ðdnþ1

j � 2dn
j þ dn�1

j Þ � lDdnþ1
j � eoxjðr � dnþ1Þ

� �
ðxÞ �

X2
j¼1

gnþ1
j ðxÞ.
If d is sufficiently smooth, then $C such that
kenþ1
s ðxÞkL1ðX0

S
Þ 6 CDt.
5. Stability

From Eqs. (11)–(13),
anFðU
nþ1

;wFÞ þ bnFðP
nþ1

;wFÞ þ cnFðU
nþ1

;wFÞ þ Bn
FðK

nþ1
F ;wFÞ þ bnFðwD;U

nþ1Þ þ aSðDnþ1;wSÞ
þ cnSðD

nþ1;wSÞ þ BSðKnþ1
S ;wSÞ ¼ F n

FðwFÞ þ F n
SðwSÞ ð17Þ
8ðwF;wD;wSÞ 2 Vn
F � W n

F � Vn
S. We define
kUkL2ðXn
F
Þ ¼

Z
Xn
F

ðU �UÞ2 dA
 !1

2

.

Let wF ¼ DtU
nþ1

, wD ¼ DtP
nþ1

, and wS = Dn+1 � Dn. Using these choices for our test functions, we arrive

at the following energy estimate.

Theorem 6. Let dn+1 = Dn+1 � Dn. Then $C > 0, independent of Dt, such that
mDt
Xn
k¼0

X2
j¼1

krU
kþ1

j k2L2ðXk
F
Þ þ kUnþ1k2L2ðXnþ1

F
Þ þl

X2
j¼1

krDnþ1
j k2L2ðX0

S
Þ þ e

Z
X0
S

jr �Dnþ1j2 dAþ 1

ðDtÞ2
kdnþ1k2L2ðX0

S
Þ

6C kU0k2L2ðX0
F
Þ þl

X2
j¼1

krD0
jk

2
L2ðX0

S
Þ þ e

Z
X0
S

jr �D0j2dAþ 1

ðDtÞ2
kd0k2L2ðX0

S
Þ

"

þ
Xn
k¼0

Dtk�fkþ1k2L2ðXk
F
Þ þ kgkþ1k2L2ðX0

S
Þ

� �#
.

As in the previous section, we will utilize a few lemmas in the proof of this result.
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Lemma 7
bnFðP
nþ1

;DtU
nþ1Þ þ Bn

FðK
nþ1
F ;DtU

nþ1Þ þ bnFðDtP
nþ1

;U
nþ1Þ þ BSðKnþ1

S ; dnþ1Þ ¼ 0.
Proof. Note that
2DtbnFðP
nþ1

;U
nþ1Þ þ DtBn

FðK
nþ1
F ;U

nþ1Þ þ BSðKnþ1
S ; dnþ1Þ

¼ 2DtbnFðP
nþ1

;U
nþ1Þ �

Z
Cn
Knþ1

F � ðDtUnþ1Þds�
Z
C0

Knþ1
S � dnþ1 ds.
But P
nþ1 2 W n

F, so bnFðP
nþ1

;U
nþ1Þ ¼ 0. And letting W1 ¼ Knþ1

F , W2 ¼ Knþ1
S , and U = Zn+1 in Eqs. (14)–

(16), we have that
�
Z
Cn
ðDtZnþ1Þ � Knþ1

F ds�
Z
C0

ðDtZnþ1Þ � Knþ1
S ds ¼ �Dt

Z
Cn
Knþ1

F �Udsþ
Z
C0

Knþ1
S �Uds

� �
¼ 0. �
Lemma 8
DtcnFðU
nþ1

;U
nþ1Þ ¼ 1

2
kUnþ1k2L2ðXn

F
Þ þ

1

2
kUnþ1k2L2ðXnþ1

F
Þ.
Proof
DtcnFðU
nþ1

;U
nþ1Þ ¼ kUnþ1k2L2ðXn

F
Þ þ Dt

X2
j¼1

Z
Xn
F

½ðUn
1 � W nÞox1U

nþ1

j þ Un
2ox2U

nþ1

j �Unþ1

j dA;
but using the fact that Un = Wn on the left and right boundaries of Xn
F, where Wn = (Wn, 0), this last term

can be written as
Dt
2

X2
j¼1

Z
Xn
F

Un � rðUnþ1

j Þ2 dA�
Z
Xn
F

W nox1ðU
nþ1

j Þ2 dA
" #

¼ �Dt
2

Z
Xn
F

ðr �UnÞ½ðUnþ1

1 Þ2 þ ðUnþ1

2 Þ2�dA�
X2
j¼1

Z
Xn
F

ox1W
nðUnþ1

j Þ2 dA
" #
and ½ðUnþ1

1 Þ2 þ ðUnþ1

2 Þ2� 2 W n
F, so
DtcnFðU
nþ1

;U
nþ1Þ ¼ kUnþ1k2L2ðXn

F
Þ þ

Dt
2

X2
j¼1

Z
Xn
F

ox1W
nðUnþ1

j Þ2 dA

¼ 1

2
kUnþ1k2L2ðXn

F
Þ þ

1

2

X2
j¼1

Z
Xn
F

ð1þ Dtox1W
nÞðUnþ1

j Þ2 dA

¼ 1

2
kUnþ1k2L2ðXn

F
Þ þ

1

2
kUnþ1k2L2ðXnþ1

F
Þ. �
Proof of Theorem 6. Using our chosen test functions and applying Lemma 7, Eq. (17) becomes
DtanFðU
nþ1

;U
nþ1Þ þ DtcnFðU

nþ1
;U

nþ1Þ þ aSðDnþ1; dnþ1Þ þ cnSðD
nþ1; dnþ1Þ

¼ Dt
Z
Xn
F

�f
nþ1 �Unþ1

dAþ
Z
Xn
F

Un �Unþ1
dAþ

Z
X0
S

gnþ1 � dnþ1 dAþ 1

ðDtÞ2
Z
X0
S

dnþ1 � dn dA

þ 1

ðDtÞ2
Z
X0
S

Dn � dnþ1 dA.
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Applying Young�s inequality,
Dt
Z
Xn
F

�f
nþ1 �Unþ1

dA 6 CDtk�fnþ1kL2ðXn
F
Þ

X2
j¼1

krU
nþ1

j kL2ðXn
F
Þ 6 CDtk�fnþ1k2L2ðXn

F
Þ þ

mDt
2

X2
j¼1

krU
nþ1

j k2L2ðXn
F
Þ;
where C is independent of Dt, application of Lemma 8 and the Schwarz inequality gives
mDt
X2
j¼1

krU
nþ1

j k2L2ðXn
F
Þ þ kUnþ1k2L2ðXnþ1

F
Þ þ l

X2
j¼1

krDnþ1
j k2L2ðX0

S
Þ þ e

Z
X0
S

jr �Dnþ1j2 dAþ 1

ðDtÞ2
kdnþ1k2L2ðX0

S
Þ

6 kUnk2L2ðXn
F
Þ þ l

X2
j¼1

krDn
jk

2
L2ðX0

S
Þ þ e

Z
X0
S

jr �Dnj2 dAþ 1

ðDtÞ2
kdnk2L2ðX0

S
Þ

þ CDtk�fnþ1k2L2ðXn
F
Þ þ kgnþ1k2L2ðX0

S
Þ.
Applying the discrete Gronwall inequality [12], the desired result is obtained. h
6. Conclusion

Given bounded initial and boundary conditions, the method proposed has been shown to be both con-
sistent and stable. We also expect to demonstrate exponential convergence for the technique in the presence

of nonquasiuniform meshes. The latter aspect will be considered in a following paper which will include

numerical results which confirm the theory presented herein.
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