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Abstract

Non-conformity in the hp version can involve incompatibility in both the degrees and the meshes between adjoining subdomains. In

this paper, we show how the mortar ®nite element method M0 and two new variants M1, M2 can be used to join together such

incompatible hp sub-discretizations. Our results show optimality of the resulting non-conforming method for various h; p and hp

discretizations, including the case of exponential hp convergence over geometric meshes. We also present numerical results for the

Lagrange multiplier when the method is implemented via a mixed method. Three-dimensional considerations suggest that our methods

M1, M2 are easier to generalize to arbitrary meshes than M0. Ó 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Engineering applications routinely require ®nite element analysis to be carried out over large and
complicated domains. Such domains often incorporate di�erent components which have to be resolved
with varying degrees of required accuracy. Meshes on these separate components may be available from
previous local analyses, or may be constructed separately by di�erent analysts. If such independent sub-
meshing is done, then the global mesh can be constructed by piecing together the component meshes. An
added advantage of this approach is that mesh re®nement can be imposed selectively on those components
where it is required (perhaps even by referring to a library of previously constructed meshes for those
components).

To support such a ¯exible meshing procedure, it is crucial that an e�cient method be employed to join
the sub-meshes together. Perhaps the most cumbersome alternative is to coordinate the meshes so that they
all match at the interfaces. If pre-meshed components are to be incorporated, then this procedure is clearly
infeasible. Instead, what is often done is that a Lagrange multiplier is used to take care of the continuity
constraints

ui ÿ uj � 0 on Cij; �1:1�

where Cij � oXi \ oXj is the interface between two subdomains Xi and Xj and ui; uj are the values of the test
or trial function u on Cij from the two sides. With such a technique, (1.1) is enforced only weakly, with the
jumps ui ÿ uj being made orthogonal to a space of Lagrange multipliers on Cij. (An alternative method, not
involving Lagrange multipliers, could be based on hanging nodes, see e.g. [12,16].)
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The mortar ®nite element method (see e.g. [4,5,7,9] and the references therein) is one example of a
Lagrange multiplier technique. In this method, precise choices are prescribed for the two ®elds (the interior
solution variable and the interface Lagrange multiplier). These choices ensure that the method is stable i.e.
an inf±sup condition is satis®ed. Some other examples of two-®eld Lagrange multiplier methods are pre-
sented in [13,17,22] (some of these are de®ned only at the inter-element, rather than the inter-sub-domain
level).

Let us mention also the existence of three-®eld methods, where one has a third ®eld z on the interface.
This variable corresponds to the exact solution of Cij, and one now introduces two Lagrange multipliers to
deal with the constraints

ui ÿ z � 0; uj ÿ z � 0 on Cij: �1:2�
See e.g. [1,8] for variants of this idea. We point out that a version of this method in [1] has been imple-
mented in the commercial hp program MSC-NASTRAN. See [20,21], where hp computational results have
been presented for the three-®eld method.

This brings us to the motivation behind this paper. Our goal here is to consider the suitability of two-
®eld methods for hp implementation, since these use less variables than three ®eld methods (and can be
implemented as a special case of three-®eld methods ± see [18]). Refs. [4,5,7] on the mortar ®nite element
method are only concerned with h version aspects. Moreover, these h version investigations have only
been carried out for the stability and optimality of such methods when quasiuniform mesh re®nement is
carried out. The issues for hp codes are more complex, since accuracy is usually achieved by increasing
the polynomial degree or using highly graded meshes, or a combination of both (see e.g. [3]) . Also, not
only the meshes, but also the degrees may be different in adjoining subdomains. Hence, any non-
conforming method is a suitable candidate for hp implementation only if it satis®es the following
conditions:
1. It is optimal for the h version when non-quasiuniform mesh re®nement (e.g. radical and geometric ± see

[3]) is performed to capture singularities.
2. It is optimal when the p version is used, i.e. the degree is increased on a ®xed mesh.
3. It gives exponential convergence when the hp version over geometric meshes is used.
By optimality, what is meant is that the non-conforming method should perform as well as the conforming
method (i.e. the method for which the meshes and degrees match), and should satisfy similar error esti-
mates, i.e. the rate of convergence should not deteriorate as a result of the non-conforming method being
employed.

It was proven in [6,19] that the mortar FEM comes close to satisfying all of the three criteria above. We
de®ne this method, denoted by M0 in Section 2, and demonstrate by means of computational experiments
that it performs as well as the conforming FEM (denoted by CF) in Section 4.

We also present two variants of this method, M1 and M2, which have the advantage of being simpler to
formulate and implement. In Section 3, we use the theoretical results for M0 obtained in [19] to show that
M1 satis®es the same error estimates as M0, while M2 has a possible deterioration of O�hÿ1=2� in terms of h.

In Section 4, we perform a numerical investigation of M1 and M2, where we show that both methods
behave as well as the conforming FEM (CF) in practice. In particular, the loss in terms of h convergence for
M2 is not very apparent for the tests performed. We also present some results for the Lagrange multiplier
variable when the methods are implemented in mixed form.

Finally, in Section 5, we make some remarks about the applicability of our results to 3-D problems. As
we point out, the mortar FEM M0 is di�cult to generalize to three dimensions for arbitrary meshes and
degrees, but the variants we suggest have straightforward 3-D analogs.

2. The mortar methods M0, M1, M2

We consider the following second-order model elliptic problem

ÿDu � f on X; u � 0 on oXD;
ou
on
� g on oXN; �2:1�
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where X is a polygonal domain with boundary oX � oXD [ oXN �oXD \ oXN � ;; oXD 6� ;�. Although we
consider (2.1), all our results hold for more general problems as well, e.g. linear elasticity (see [18]). The
form (2.1) is equivalent to the following variational form. Find u 2 E�X� satisfying, for all v 2 E�X�

a�u; v� �def

Z
X
ru � rv dx �

Z
X

fv dx�
Z

oXN

gv ds �def F �v�: �2:2�

Here, the energy space E�X� is seen to be

E�X� � fu 2 H 1�X� j u � 0 on oXDg �def H 1
D�X�;

where we are using H k�X� to denote the space of functions with k generalized derivatives on X: 1

To de®ne the ®nite element discretization, we assume X is the union of S non-overlapping polygonal
subdomains fXigS

i�1 such that oXi \ oXj �i < j� is either empty, a vertex, or an entire edge of Xi and Xj. In
the latter case, we denote this interface edge as Cij �i < j�. More generally, Cij could consist of several entire
edges, C1

ij;C
2
ij; . . . ;Ck

ij, but for notational convenience, we assume a single edge here. The above conformity
condition can be relaxed, since by using the arguments of [4], our results (with some minor changes) extend
to non-conforming decompositions as well. We set the interface set C to be the union of all intersections
oXi \ oXj; i < j; which result in an edge Cij.

For each Xi, let fTi
hg be a sequence of geometrically conforming, shape regular [10] meshes of triangles

and parallelograms. The meshes do not have to be quasiuniform, and no compatibility is assumed between
meshes in di�erent domains. Only a mild restriction, Condition (M), is imposed ahead.

As usual, we denote for K � Rn, the set Pk�K� �Qk�K�� to be all polynomials of total degree
�degree in each variable�j6 k on K. Let k be a degree vector, k � fk1; k2; . . . ; kSg which speci®es the degree
used over each subdomain, and denote k � min16 i6 Sfkig. We assume then that the following families
fV i

h;ki
g of piecewise polynomial spaces are given on Xi:

V i
h;ki
� fu 2 H 1�Xi� j ujK 2Ski�K� for K 2Ti

h; u � 0 on oXi \ oXDg;
where Sk�K� � Pk�K� �Qk�K�� for K a triangle (parallelogram).

We then de®ne

~Vh;k � fu 2 L2�X� j ujXi
2 V i

h;ki
g; �2:3�

a space of functions on which no continuity constraints are imposed across the interfaces. Note that both
the meshes and the degrees may be different across interfaces.

The space (2.3) is non-conforming � ~Vh;k 6�E�X�� and cannot be used for ®nite element calculations, since
a large consistency error arises due to the complete absence of inter-domain continuity (1.1). To reduce this
consistency error, we use, instead, a subspace of ~Vh;k, denoted by Vh;k, which enforces (1.1) weakly, but is still
non-conforming. More precisely, let Sij

h;k be a space of Lagrange multipliers on Cij. Then we de®ne

Vh;k � u 2 ~Vh;k

��� Z
Cij

�ui

(
ÿ uj�v ds � 0 8v 2 Sij

h;k 8Cij � C

)
: �2:4�

Then the discretization to (2.1) is given by: Find uh;k 2 Vh;k satisfying, for all v 2 Vh;k

aS�uh;k; v� �def
XS

i�1

Z
Xi

ruh;k � rv dx � F �v�: �2:5�

We may also write the above problem as a mixed method that involves an auxiliary Lagrange multiplier
unknown kh;k, belonging to the Lagrange multiplier space,

Sh;k � Sh;k�C� �
Y

Cij�C

Sij
h;k: �2:6�

1 We set L2�X� � H0�X� and denote by both jj � jjk;A and jj � jjHk �A� the norm of Hk�A�. Note that the de®nition of these spaces can be

extended to non-integer values of k by interpolation.
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De®ning the bilinear form bS on ~Vh;k � Sh;k by

bS�v; v� �
X
Cij�C

Z
Cij

�vi ÿ vj�v ds;

we seek �~uh;k; kh;k� 2 ~Vh;k � Sh;k satisfying, for all �v; v� 2 ~Vh;k � Sh;k,

aS�~uh;k; v� � bS�v; kh;k� � bS�~uh;k; v� � F �v�: �2:7�
It may be easily shown that if uh;k solves (2.5) and �~uh;k; kh;k� solves (2.7), then uh;k � ~uh;k.

The mixed method is one way of implementing such methods (and has been used by us for the exper-
iments in Section 4). However, these can also directly be implemented as non-conforming methods (without
the auxiliary variable k) ± see [5].

From the formulation (2.5) or (2.7), it is seen that the method we obtain really depends on the choice of
the spaces Sij

h;k. Let us now give three such choices, which result in three di�erent non-conforming methods.
Method 1: M0 (Mortar FEM) (k P 1). Here we choose Sij

h;k as follows. Let the mesh Ti
h from Xi induce a

mesh Ti
h�Cij� on Cij, and denote the subintervals of this mesh by Il; 06 l6N . Then we de®ne

Sij
h;k � fv 2 C�Cij� j vjIl

2 Pki�Il� l � 1; . . . ;N ÿ 1; vjIl
2 Pkiÿ1�Il� l � 0;Ng

i.e., Sij
h;k consists of continuous piecewise polynomials of degree ki on Ti

h�Cij�, except that on the ®rst and
last subinterval, the polynomial degree is ki ÿ 1.

(Let us mention that imposing the mesh and degree on Sij
h;k from the domain Xi as we do here is quite

arbitrary, and these could instead be taken from the domain Xj as well, without changing the results ob-
tained.)

Method 2: M1 (k P 1). We now take Sij
h;k to consist of piecewise polynomials of uniform degree ki ÿ 1

instead, i.e.

Sij
h;k � fv 2 C�Cij� j vjIl

2 Pkiÿ1�Il� l � 0; . . . ;Ng:
Method 3: M2 (k P 2). We can, in fact, de®ne method Mt �16 t6 k� by taking

Sij
h;k � fv 2 C�Cij� j vjIl

2 Pkiÿt�Il� l � 0; . . . ;Ng:
Setting t � 2 gives method M2, where the Lagrange multipliers are of degree k ÿ 2.

Remark 2.1. The above methods can also be formulated when the degrees on Ti
h�Cij� are not uniform over

all the intervals Il, but are given by kl
i . In that case, M0, for example, uses Lagrange multipliers which are of

degree kl
i on each Il, except for the ®rst and last intervals, where the degree is kl

i ÿ 1.

Let us denote the spaces (2.4) and (2.6) corresponding to the method Mt �t � 0; 1; 2� by �V t
h;k; S

t
h;k�. Then we

see immediately that

S2
h;k � S1

h;k � S0
h;k: �2:8�

This implies that the functions in V 0
h;k are the most constrained, and those in V 2

h;k are the least constrained, so
that by (2.4)

V 0
h;k � V 1

h;k � V 2
h;k: �2:9�

We have the following theorem.

Theorem 2.1. Problems (2.5) and (2.7) have unique solutions for methods M0, M1, M2.

Proof. On ~Vh;k given by (2.3), let us de®ne

kuk1;S � aS�u; u�� �1=2
: �2:10�
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It is shown in [7] that provided oXD 6� ; and Sij
h;k contains at least all constant functions, we have for all

u 2 Vh;k (given by (2.4))

kuk1;S P Ckuk0;X �2:11�

with C a constant independent of h and k. Hence kuk1;S is a norm on, V 0
h;k �k P 1�; V 1

h;k �k P 1�; V 2
h;k �k P 2�.

Noting the coercivity of aS�:; :� in this norm then shows that (2.5) has an unique solution for all three
methods.

For the mixed form (2.7), we note that in [4], it is established that

inf
/2S0

h;k

sup
v2 ~V 0

h;k

bS�v;/� > 0 �2:12�

so that (2.7) is uniquely solvable for M0. Using (2.8) and (2.9) then give the inf±sup condition for M1, M2
as well, proving unique solvability again. �

3. Convergence estimates for u

To obtain error estimates for the approximate method (2.5), we use the second Strang lemma [10], which
bounds the error for non-conforming methods in terms of an approximation and a consistency error,

kuÿ uh;kk1;S 6C inf
v2Vh;k

ku
 

ÿ vk1;S � sup
w2Vh;k

jah;k�u;w� ÿ F �w�j
kwk1;S

!
� C eA�u�� � eC�u��: �3:1�

Since (2.5) and (2.7) have the same solution uh;k, the estimate (3.1) will hold for (2.7) as well. Note that for
mixed methods like (2.7), an alternative method of analysis is to estimate the inf±sup or Babuska±Brezzi
constant

ch;k � inf
/2Sh;k

k/k�;S�1

sup
v2 ~Vh;k

kvk1;S�1

bS�v;/� > 0 �3:2�

with k � k�;S being an appropriate norm (see [4]). Such an analysis yields error estimates for kh;k as well. In
our case, the mixed method (2.7) is to be viewed primarily as a convenient method of practically imple-
menting the non-conforming method (2.5). It is shown in [18] that the following estimate holds for all three
methods:

ch;k P C kÿ�3=4�ÿ�;

where � > 0 is arbitrary. We show some results on computations for kh;k, in Section 4.
To bound the terms in (3.1), we ®rst note that the consistency error eC�u� satis®es, for any choice of Sh;k

(see [4])

eC�u�6C
X
Cij�C

inf
w2Sij

h;k

ou
on





 ÿ w






H1=2�Cij�� �0

; �3:3�

where n is the unit outward normal to Xi, and V 0 denotes the dual space of V. It is now easy to estimate
(3.3), using approximation theory results for the error of best approximation. (See [6], where a somewhat
more delicate estimate than (3.3) is used.)

Turning to the approximation error eA�u�, we see that it depends not only on the approximation
properties of ~Vh;k, but also on the spaces Sij

h;k. In [19], it is shown that provided the meshes and degrees
satisfy ``Condition(M)'' below, eA�u� can be estimated by the error of best approximation
inf v2 ~Vh;k

P
i kuÿ vk1;Xi

, times a stability constant that essentially behaves like O�k3=4� for the methods above.
The required Condition(M) is only a mild restriction, which stipulates that the mesh re®nement cannot be
stronger than geometric.
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Condition(M). There exist constants a;C0; j, independent of the mesh parameter h and degree k, such that
for any trace mesh on an interface edge c � C, given by x0 < x1 < � � � < xN�1, with hj � xj�1 ÿ xj, we have
�hi=hj�6C0ajiÿjj, where a satis®es 16 a < minf�k � 1�2; jg.

Let us now give some estimates, treating the cases of quasiuniform and non-quasiuniform meshes
separately.

3.1. Quasiuniform meshes: h, p and hp version

For quasiuniform families of meshes fTi
hg, let h denote the maximum mesh width and k be the mini-

mum degree. Then it is easily seen that Condition(M) holds, with a � 1. The following result is established
in [18,19] for eA�u�, for the method M0.

Lemma 3.1. Let the solution of (2.1) satisfy u 2 Hl�X�; l P 3=2 �l P 7=4 if k varies�. Then for the hp
version with quasiuniform mesh Ti

h on each Xi

inf
v2V 0

h;k

kuÿ vk1;S 6Chlÿ1kÿ�lÿ1���3=4�kukl;X; �3:4�

where l � minfk � 1; lg and C is a constant independent of h, k and u.

Using (2.9), the following corollary is immediate.

Corollary 3.1. For all three choices M0, M1, M2, we have

eA�u�6Chlÿ1kÿ�lÿ1���3=4�kukl;X;

where l; l; u and C are as in Lemma 3.1.

Next, we consider the consistency error, which can easily be estimated by (3.3) and approximation
theory. For (M0), (M1), we are approximating with piecewise polynomials of degree at least ki ÿ 1, so when
u 2 H l�X�, we obtain

inf
w2Sij

h;k

ou
on





 ÿ w






H1=2�Cij�� �0

6Chl��1=2�k�lÿ1�
i kukl;X; �3:5�

where l � minfki; lÿ �3=2�g. For (M2), on the other hand, the functions in Sij
h;k have degree ki ÿ 2, so that

we again get (3.5), but with l � minfki ÿ 1; lÿ �3=2�g now. Hence we have the following result.

Lemma 3.2. The consistency error satisfies

eC�u�6Chlkÿ�lÿ1�
i kukl;X;

where l � minfki � �1=2�; lÿ 1g for M0, M1 and l � minfki ÿ �1=2�; lÿ 1g for M2.

Combining Lemmas 3.1 and 3.2 gives the following result.

Theorem 3.1. Let the solution of (2.1)satisfy u 2 Hl�X�; l > 3=2 �l > 7=4 if k varies�. Then for the hp
version with quasiuniform meshes

kuÿ uh;kk1;S 6Chminfkÿt;lÿ1gkÿ�lÿ1���3=4�kukl;X; �3:6�

where t � 0 for M0, M1 and t � 1=2 for M2, and C is a constant independent of h; k and u.
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Taking k ®xed in (3.6) gives an optimal rate for the pure h version for methods M0, M1

kuÿ uhk1;S 6C hminfk;lÿ1g: �3:7�
For method M2, we get a rate of O�hminfkÿ�1=2�;lÿ1g� which is sub-optimal by O�hÿ1=2� when the solution is
smooth enough. (Numerical experiments in Section 4 however, did not show this sub-optimality.)

For h� constant, on the other hand, (3.6) gives a sub-optimal p version estimate of O�kÿ�lÿ1���3=4��.
However, as we have shown recently in [6], this rate can be improved using an interpolation argument to

kuÿ ukk1;S 6C���kÿ�lÿ1���; �3:8�
where � > 0 is arbitrary. This estimate is optimal up to O�k��.

Estimate (3.8) can be further improved for the case of polygonal domains, where the solution has sin-
gularities at the vertices of X (and at points in oXD \ oXN), but is otherwise smooth. Such singularities are
composed of terms of the form rajlog rjsf �h�, where �r; h� are polar coordinates at the point of singularity,
a > 0 and s � 0 or 1 [11]. In such cases, we obtain (assuming s � 0) that

kuÿ ukk1;S 6C��� kÿ2a0��; �3:9�
where a0 is the smallest singular exponent. Of course, if the mesh is properly designed (see below), the
convergence will ®rst be exponential, before slowing to the asymptotic rate (3.9).

3.2. Non-quasiuniform meshes: h version

For unsmooth domains, it is seen from Eq. (3.7) above, that quasiuniform h re®nement will only give
O�ha0� convergence, where a0 is the smallest singularity exponent. Hence the optimal O�hk� will not be
realized when the polynomial degree k P a0. In such cases, non-quasiuniform mesh re®nement can be used to
improve the O�ha0� convergence, and even recover the full O�hk� convergence. Here h now denotes Nÿ1=d , N
being the number of degrees of freedom, and d being the dimension (d � 2 here).

For the singular function xa on the interval 06 x6 1, it has been shown in [14] that the optimal 1-D mesh
is the so-called radical mesh

xi � i
n

� �b

; i � 0; 1; . . . ; n; �3:10�

where the optimal exponent when the degree is k is b � �k � 1=2�=�aÿ 1=2�. With this mesh, the full
O�hk� �h � Nÿ1� convergence is recovered in 1-D.

Let A � fAlg be the set of points where the solution is singular (i.e. vertices of X and points in
oXD \ oXN). Then in 2-D, we use a radical mesh re®nement with O�N� elements analogous to (3.10), in a
neighborhood of each Al 2A. We choose an exponent b P 1, let c � 1ÿ �1=b�, and for each element K,
denote diam�K� to be its diameter. Then if d�K� �D�K�� is the minimum (maximum) distance of points in K
from Al, the radical meshes satisfy

C1hdc�K�6 diam�K�6C2hDc�K�; Al 62 K; �3:11�

C1hDc�K�6diam�K�6C2hDc�K�; Al 2 K; �3:12�
where h � Nÿ1=2. When the exponent b is properly optimized with respect to a and k, we can obtain O�hk�
convergence, by combining radical meshes in the vicinity of appropriate Al with adequate re®nement for
smooth components in the interior. (This has been mathematically proven for the case k � 1 in [2].)

To ensure that the error using non-conforming methods is of the same order as that using conforming
methods, we must ensure that Condition(M) is satis®ed. For this, we note that for the mesh (3.11) and
(3.12), the trace on any Cij containing Al will be similar to (3.10). For (3.10), however, Condition(M) is
easily veri®ed to hold, taking a � ebÿ1 and C0 � 2b ÿ 1 (see [18] for details).

In the L-shaped domain in Fig. 1, radical mesh re®nement will be required only around vertex O, since
the other vertices have relatively mild singularities. Suppose now that the domain X is divided into two
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subdomains X1 and X2 and a mortar method is used to join the sub-meshes. As is often the case in such
subdivisions, the vertex O may no longer be a reentrant corner or even a vertex of the subdomains. To
preserve optimal convergence, however, the meshes on each subdomain should be re®ned about the point
O, since otherwise only O�ha0� convergence will be realized overall. This is a danger of meshing subdomains
independently, since proper attention must be paid to singularities that are inherited from the geometry of
the global domain.

Hence radical meshes are one example of non-quasiuniformly re®ned meshes which can be used around
points of singularity Al to improve convergence in M0, M1, M2, provided the re®nement is carried out
around Al in each subdomain.

3.3. Non-quasiuniform meshes: hp version

If the mesh is re®ned geometrically in the vicinity of points of singularity, then the conforming hp ®nite
element method yields exponential convergence [15]. Let us describe such meshes fTi

hg on Xi. Let n be a
parameter representing the number of layers of re®nement around points of singularity Al in Xi. We
choose a geometric ratio q; 0 < q < 1 �q � 0:15 is optimal�. Elements K in the ®rst layer (i.e. elements with
Al as a vertex) must have diam�K� � qn. Elements in successive layers j � 2; . . . ; n� 1 lie at a distance d�K�
away from Al, where

C1qn�2ÿj6 d�K�6C2qn�1ÿj: �3:13�
Moreover, for such elements, diam�K� � d�K�. Finally, outside the neighborhoods of the above geo-

metric re®nement, Ti
h is assumed to consist of a quasiuniform mesh that conforms with the re®nement in

the layers. The degree k in all elements of Ti
h is chosen to be proportional to n.

For such geometrical meshes, the following theorem is established for M0 in [19] by showing that both
eA�u� and eC�u� in (3.1) decay exponentially with n. The estimate for eA�u� carries over trivially to M1, M2
by (2.9). Also, the same argument from [19] used to show that eC�u� is exponential for M0 carries over to
M1, M2 as well (though the constants in the exponential rate may differ). Hence we obtain the following
theorem.

Theorem 3.2. Let un;k 2 Vn;k be the approximate solution to (2.5) where the hp method over geometric meshes
Ti

h is used with uniform degree vector k, proportional to n, the number of layers. Then for M0, M1, M2

kuÿ un;kk1;S 6CeÿcN1=3

;

where N is the number of degrees of freedom and c > 0 depends on the method but is independent of N.

Note once more that for a partition like the one in Fig. 1, the mesh must be re®ned about O in each
subdomain.

Fig. 1. (a) L-shaped domain. (b) Partition and tensor product mesh for m � n � 2.
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Remark 3.1. Instead of (2.1), we could consider the problem

ÿdiv�agrad u� � f on X; u � 0 on oXD; a
ou
on
� g on oXN; �3:14�

where ai P a P ai > 0 is a coe�cient that is smooth over each Xi. Then, modifying the argument in [7,19], it
is easy to verify that the following analog of (3.6) will hold:

kuÿ uh;kk1;S 6Chminfkÿt;lÿ1gkÿ�lÿ1���3=4� XS

i�1

a2
i kuk2

l;Xi

 !1=2

: �3:15�

Of course, discontinuities in a will, in general, introduce singularities in u, so that the right side of (3.15)
may not be bounded. However, in such cases, conforming methods will also give poor results, since an
estimate comparable to (3.15) holds there. Our computational experiments for problem (3.14) in the next
section illustrate the fact that mortar and conforming methods display comparable performance for such
problems.

4. Numerical results

In this section, we illustrate the results of the previous section, by comparing the non-conforming
methods M0, M1, M2 on the L-shaped domain in Fig. 1 broken up into two subdomains, with the con-
forming method CF when the domain is meshed without decomposition. We perform experiments with two
possible exact solutions:

us � r4 cos
2h
3

� �
ÿ 1; �4:1�

uns � r2=3 cos
2h
3

� �
ÿ 1: �4:2�

The second solution has the typical r2=3 singularity found at the reentrant corner O for L-shaped domains.
In each case, we prescribe Neumann boundary conditions, where oXN � oX, with uniqueness maintained
by imposing the condition u � 0 at the single point C. (Results for the case oXD � oX are similar, see e.g.
[18,19].)

The non-conforming method (2.5) is implemented as a mixed method (2.7), so that we also get an ap-
proximation kh;k to the Lagrange multiplier (for which we show some results at the end of the section). For
programming convenience, we restrict our meshes to tensor product meshes with X1 divided into 2m2

rectangles and X2 into n2 rectangles, as in Fig. 1(b). (The mesh on X1 will always be symmetric about y � 0.)
Note that these meshes will not satisfy the assumption of shape regularity as the level of discretization is
increased, nor do the radical and geometric meshes we use strictly conform to the de®nition of optimal
meshes in Section 3. However, our computational results are still in good agreement with the theorems we
have stated.

4.1. The smooth solution

Let us ®rst consider the h version using two uniform meshes on X1 and X2, for the case that the solution
is smooth, i.e. given by (4.1). We take m grid points along both the x and y axis for X1 (top half) and n for
X2, and use M0, M1, M2 with the combinations �m; n� 2 f�2; 3�; �4; 6�; . . . ; �14; 21�g, each of which gives an
incompatible mesh. For comparison, we also compute u using CF, with m � n � 2; 4; . . . ; 14. Fig. 2 shows
the percentage relative error in the energy norm (2.10). We observe that all methods behave optimally for
both k � 2 and 3, showing that the non-conforming methods give equally small errors as the conforming
one. Surprisingly, method M2 does not display the O�h1=2� consistency error that may have been expected
from Lemma 3.2 and actually behaves only slightly worse than the other methods.
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4.2. The unsmooth solution

Next, we consider that same �m; n� combinations as above, but for the case of the unsmooth solution
(4.2). In Fig. 3, we compare CF, M0, M1 using both a uniform mesh as in Fig. 2 and a radical mesh (with
k � 2). For the latter, the mesh is de®ned by (3.10) along both axes (see Fig. 1(b)). We observe that if the
mortaring is done using uniform meshes, then the error only decays as O�h2=3�. With radical meshes, this
rate is improved to the optimal one of O�h2� (for this, we took b � 3). With k � 3, however, we were not
able to see further improvement over O�h2� for any b, possibly because we are not using the optimized
meshes (3.11) and (3.12), but only tensor product ones (which have more degrees of freedom). These results
(for M0, M1, M2) are shown in Fig. 4. The graphs shown were obtained with b � 3. Once again, from
Figs. 3 and 4, conforming and non-conforming methods have similar behaviour.

In the remaining graphs for the error in u, we only show the results for method M1, since the ones for
M0, M2 are essentially identical. For these experiments we take m � n and along both the x and y axes, take
the grid points

Fig. 3. h version with radical meshes and unsmooth solution (k � 2).

Fig. 2. h version with uniform meshes and smooth solution (k � 2 and 3).
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x0 � 0; xj � rnÿj
i ; j � 1; . . . ; n;

where ri is the geometric ratio used in Xi. To make the method non-conforming, we take r1 � 0:17 and
r2 � 0:13, which lie on opposite sides of the optimal r � 0:15. Our goal is to investigate the p and hp
versions for the case of the unsmooth solution when mortaring is used.

First, in Fig. 5, we compare the conforming FEMs (r1 � r2 � 0:13 or 0:17) with M1 (r1 � 0:17,
r2 � 0:13), using n � 4 layers. We see the characteristic `S' shaped convergence curve being clearly visible ±
the middle part denoting the exponential p version convergence phase, which at the end ¯attens out to the
O�kÿ2a0� algebraic rate (a0 � 2=3 here). Although (3.8) suggests a possible loss of O�k3=4� for M1, we do not
observe it here, since the non-conforming and conforming slopes are the same. (Note that CF for 0.13
behaves better than 0.17 as N increases, showing over-re®nement is better than under-re®nement.)

In Fig. 6, we plot similar graphs for M1, using various n. The hp version is then the lower envelope of
these curves ± by changing both n and k simultaneously, we remain in the exponential phase. In Fig. 7, we
plot log(relative error) vs N 1=4 which results in a straight line, showing that the hp version gives CeÿcN1=4

Fig. 5. Comparison of M1 with the conforming FEM for the p version over geometric mesh (unsmooth solution, n � 4).

Fig. 4. h version with radical meshes and unsmooth solution (k � 3).

P. Seshaiyer, M. Suri / Comput. Methods Appl. Mech. Engrg. 189 (2000) 1011±1030 1021



convergence. The reason we only get an exponent of N 1=4 rather than N 1=3 is that our tensor product meshes
have too many extra degrees of freedom compared to the optimized meshed (3.13). (We have also plotted
the error vs N 1=3 in Fig. 7, for comparison.)

4.3. Non-conformity due to the degree

So far, we have only considered experiments where the non-conformity is due to the meshes. In Fig. 8,
we show the results of doing the h version over conforming uniform meshes on X1, X2 with
m � n � 2; 4; . . . ; 14, for the case that the degree k1 � 3 on X1 and k2 � 4 on X2 (the solution is smooth). As
expected, the overall error behaves similarly to CF with degree 3 (i.e. the minimum degree used) rather than
degree 4. Note, however, that using selectively high degrees can be very effective in treating parts of the
domain where the solution is unsmooth (e.g. due to boundary layers or singularities) and is a crucial
strategy in p and hp codes like STRIPE and PHLEX. Mortaring could be used to implement this.

Fig. 6. p version for geometric mesh using M1, n � 1; . . . ; 6; r1 � 0:17; r2 � 0:13.

Fig. 7. Exponential convergence for M1 non-conforming method.
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4.4. The Lagrange multiplier error

Let us now show some results on computations for the error in the Lagrange multiplier. We consider
the h version using uniform meshes on X1 and X2. As before, we take m grid points along both the x and
y axis for X1 (top half) and n for X2, and use M0, M1, M2 with the combinations �m; n� 2
f�2; 3�; �4; 6�; . . . ; �14; 21�g.

First we consider the smooth solution given by (4.1). Fig. 9 shows the percentage relative Lagrange
multiplier error in the L2 norm over the interface c plotted vs the number of degrees of freedom for the cases
k � 2 and 3.

As discussed in [18], the expected rate in L2�c� for k � 2 is O�h2� for both M0 and M1, whereas we
observe O�h2:5� for M0 and O�h2� for M1. For k � 3, we observe the theoretically predicted rates for all
three methods.

Fig. 10 shows the p version results for the error in the Lagrange multiplier for all the three methods. The
asymptotic behaviour seems to be the same.

Fig. 9. Error in Lagrange multiplier for h version with uniform mesh for smooth solution.

Fig. 8. h version for a conforming uniform mesh with different degrees on X1 and X2.
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Next, we consider the case of the unsmooth solution given in (4.2). In Fig. 11 we plot the results for the
percentage relative L2 error in the Lagrange multiplier for this case using uniform meshes.

Note that this solution has a r2=3 singularity which implies u 2 H �5=3�ÿ��X�. Therefore, the gradient
ru 2 H �2=3�ÿ��X�. Hence we have on the interface c

ou
on
� ru � njc 2 H �2=3�ÿ�ÿ�1=2��c� � H �1=6�ÿ��c�

so that the L2 error should decay as O�h1=6�. Fig. 11 shows that in all the three methods M0, M1, M2, the
error in the Lagrange multiplier decays as predicted.

To conclude this sub-section, we show that the point-wise derivatives extracted along the interface OA in
Fig. 1(b) using the non-conforming method have the same accuracy as that extracted using conforming
methods, even when the singular solution uns in (4.2) is used. Since the derivatives for uns have O�rÿ1=3�
behaviour as r! 0, we extract values at 19 equally spaced points in �1=20; 19=20�. In Fig. 12, we have

Fig. 10. Error in Lagrange multiplier for p version with uniform mesh for smooth solution.

Fig. 11. Error in Lagrange multiplier for h version with uniform mesh for unsmooth solution.
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plotted ux as obtained from the exact solution, the average of the conforming solutions (from X1 and X2),
the average of the non-conforming solutions (using method M1), and ÿk (since k � ÿux). This is for the
cases k � 4 and 8, when a geometric mesh with n � 2, r1 � 0:17 and r2 � 0:13 is used. It is observed that
the computed values are all comparable to the exact values, except that as r! 0, the value from k shows
oscillations. The results for uy in Fig. 13 are similar (there is no k value here). We mention that even if the
value of ux or uy is taken only from one side (without averaging), the results do not change much, and the

Fig. 13. Point-wise extraction of uy along interface.

Fig. 12. Point-wise extraction of ux along interface.
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accuracy for the conforming and non-conforming methods remains equal. This suggests that stress ex-
traction can be accurately performed even along interfaces when mortar methods are used in elasticity
problems. (We also mention that the discontinuity in u across interfaces will be extremely small, as observed
also in [20].)

4.5. Discontinuous coe�cients

We now consider problem (3.14) on the L-shaped domain X � X1 [ X2, where a � ai on Xi; a1; a2

constants. This will introduce a possible singularity at the points A and O (Fig. 1(b)). Suppose we take
Neumann boundary conditions oXN � oX, with a Dirichlet condition imposed only at the point C. Then it
may be veri®ed that the dominant singularity at O behaves like ra, where

a � 2

p
tanÿ1

����������������
1� 2

a1

a2

r� �
: �4:3�

(Note that for a1 � a2; a � 2=3 as before. Also, 0:5 < a < 1.) For simplicity, we ignore the singularity at A,
and take the exact solution to be

u1 � ujX1
� ra cos�ah�

�
� tan

3ap
2

� �
sin�ah�

�
ÿ c; �4:4�

u2 � ujX2
� c ra cos�ah�� ÿ 1�; �4:5�

where c � 1� tan�3ap=2� tan�ap=2�. Then u given by the above satis®es (3.14), together with

u1 � u2 on OA; a1

ou1

on
� a2

ou2

on
on OA; u�C� � 0:

We impose appropriate Neumann conditions on oX to approximate the problem (3.14) with exact solution
(4.4) and (4.5), by the mortar method M1 used along OA.

In Fig. 14, we show the results for (1) a1 � 1; a2 � 1, (2) a1 � 1; a2 � 2, (3) a1 � 2; a2 � 1 using M1 and
CF. An h version over a uniform mesh (b � 1) is used with k � 2. We see that the methods M1 and CF
behave very similarly, and that the error is governed only by the value of a. In fact, we observe precisely
O�ha� convergence, with a given by (4.3).

Fig. 14. h version (uniform mesh) for discontinuous coef®cients.
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Fig. 15 shows the e�ect of using radical meshes (b � 3) with M1. We now get parallel curves, with slope
O�h2�, as expected. The reason the curves here (and in Fig. 14) are separated is because the constant de-
pends on a (it contains the term kÿ2a, for instance).

Finally, in Fig. 16, we compare M1 with CF when we take a1 � 1; a2 � 200. For this case, a � 0:5016.
We see that both methods have very large errors in this case. This is to be expected, since the mortar
method gives an approximation that although not continuous, will have stringent continuity constraints.

We remark that experiments with p and hp versions all show similar results between CF and M1, for the
above cases.

5. Conclusions and extensions to 3-D

In this paper, we have investigated three non-conforming ``mortaring'' methods: M0, M1, M2. These can
be used to join together subdomains on which separate hp mesh-degree combinations have been chosen,

Fig. 15. h version (radical mesh) for discontinuous coef®cients.

Fig. 16. h version (uniform mesh) for a1 � 1; a2 � 200.
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without any compatibility restrictions on the interfaces. Each of these methods uses only two ®elds. We
have shown that all three methods satisfy the three criteria listed in the introduction, which ensure that the
observed error is comparable to that obtained by conforming methods, when the h, p or hp versions are
used. An important point to remember is that optimal convergence is only obtained if all submeshes take
possible singularities into account. Our computational results suggest that the sub-optimal h version rate
predicted for M2 may only be mildly apparent in practice.

Let us now describe the extension of our methods to a simple 3-D case. Consider problem (2.1) where
oXN � ;, and where X is decomposed into two subdomains X1 and X2 (see Fig. 17). Suppose that T1

h, the
mesh on X1, de®nes a tensor product mesh of rectangles on C12. This case has been considered in [18], where
error estimates for the analogs of M0, M1, M2 have been derived, using a tensor product extension of the
2-D case.

Let us describe these non-conforming methods. For K � R2, we denote by Qk;l�K� the set of polynomials
on K which is of degree k in x and l in y (so that Qk;l�K� � Qk�K�). As before, the non-conforming method
consists of choosing a space of Lagrange multipliers S12

h;k de®ned on the mesh T1
h�C12�, and de®ning Vh;k by

(2.4). Let us denote the rectangles in the mesh on C12 by Kij; 06 i; j6N . Then if the polynomial degree is k
in X1, we de®ne the method M0 by

S12
h;k � fv 2 C�C12� j vjKij

2 Ql;m�Kij�; where l � k if i 62 0;N ; l � k ÿ 1 if i � 0;N

and m � k if j 62 0;N ;m � k ÿ 1 if j � 0;Ng

which is the tensor product version of the 2-D M0 (see Fig. 18).
As shown in [18], the results in Section 3 will still hold for this choice, except that in the estimate (3.6),

the factor k3=4 in the exponent of k must now be replaced by k5=4. Moreover, it is easy to de®ne M1, M2 as
well, by simply taking continuous functions that are in Qkÿ1�Kij� and Qkÿ2�Kij� respectively for all i; j. Then
the analogous estimates for M1, M2 will also hold.

Fig. 17. Submeshing of a 3-D domain.

Fig. 18. Lagrange multiplier spaces on C12.
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The above construction for M0 cannot be extended to cases where the mesh on C12 does not have a
tensor product character. On the other hand, the methods M1, M2 can be easily extended to any case where
the interfaces have rectangular (or more generally parallelogram) meshes. This shows the added ¯exibility
our relaxed de®nition has over the usual mortar FEM. In [18], moreover, we provide a method for com-
putationally testing the stability for arbitrary choices of Sij

h;k. Using this technique, for instance, we show
that if Q0k (serendipity or trunk) spaces are used instead of Qk (product) spaces, then the methods M0, M1
can be unstable, and method M2 is recommended instead.

Let us make one ®nal remark. In Fig. 19, we have shown a 3-D analog of an L-shaped domain. It is well
known (see e.g. [3]) that the solution now has edge, vertex and edge-vertex singularities, the strongest of
which lie along AB. If X is divided into two blocks, then each sub-mesh must be designed with proper
attention paid to the singular behaviour, as shown in Fig. 19(right-hand side). A uniform mesh on each
block (of the type in Fig. 17(right-hand side)) will result in poor convergence.
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