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Abstract — In this paper, we present a non-conforming hp computational modeling
methodology for solving elasticity problems. We consider the incompressible elasticity
model formulated as a mixed displacement-pressure problem on a global domain which
is partitioned into several local subdomains. The approximation within each local
subdomain is designed using div-stable hp-mixed finite elements. The displacement is
computed in a mortared space while the pressure is not subjected to any constraints
across the interfaces. Our computational results demonstrate that the non-conforming
finite element method presented for the elasticity problem satisfies similar rates of
convergence as the conforming finite element method, in the presence of various h-
version and p-version discretizations.
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1. Introduction

Many applications in science and engineering often require complicated finite element mod-
eling with robust elements for elasticity problems. Often such design is accomplished by

1The work of the last author has been partially supported by the National Science Foundation under
Grant DMS 0207327.
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first partitioning the global domain into several local subdomains. Each of these local sub-
components is then modeled independently, maybe using different discretizations based on
the application. Finally, these individually discretized subcomponents are coupled along
the respective interfaces to realize the global domain. In this procedure, the finite element
nodes of each subdomain often do not coincide at the common interface. This motivates the
necessity for employing non-conforming methods at the subdomain level.

The mortar finite element method [10] is an example of such a non-conforming technique
which can be used to de-compose and re-compose a domain into subdomains without re-
quiring compatibility between the meshes on the separate components. This method was
first analyzed for the Poisson problem [3, 8, 21, 23–25] and was later extended to the Stokes
problem [1,4–7,14] for the h, p, hp-versions. In this method, precise choices are described for
the two fields (the interior solution variable and the interface Lagrange multiplier). These
choices ensure that the method is stable i.e., an inf-sup condition is satisfied. Let us mention
also the existence of three-field non-conforming techniques where one also has a third field on
the interface beside the solution variable and the Lagrange multipliers [13,22]. One can also
find other specific formulations such as the mortar finite volume methods [17] and multigrid
techniques for mortars [11, 18, 27], in the literature. A discussion on the iterative substruc-
turing method for the mortar finite elements can be found in [15, 16]. These methods are
becoming increasingly popular as specialized domain decomposition techniques for treating
second-order partial differential equations on any type of domain, with very few restrictions
on the grid related to the discretization procedure.

The computational results available in the literature so far are only for the case of Stokes
flow, which is the limiting case of the elasticity problem when ν → 1

2
. Hence, the purpose

of this paper is to present the hp mortar finite element formulation for the mixed elasticity
boundary-value problem and for the first time validate the convergence behavior computa-
tionally.

The outline of the paper is as follows. In Section 2, we present the model problem and
discuss its finite element formulation. The non-conforming hp finite element discretization
is described in Section 3. We formulate our model problem as a mixed method for imple-
mentation in Section 4. Finally, our computational experiments for the model problem on
a L-shaped domain is presented in Section 5. In particular, we recover optimal convergence
rates for these techniques in the presence of highly non-quasiuniform geometric meshes. Our
results also show that these methods behave as well as conforming finite element methods.

2. Model problem

We consider linear isotropic elasticity under conditions of plain strain and let our domain
Ω ⊂ IR2 be a polygon subjected to a body force f and tractions g on the boundary Γ.
Let 0 6 ν 6

1
2

be the Poisson ratio and E the modulus of elasticity, and define the Lamé
constants

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
. (1)

Also, let u = (u1, u2) be the displacement and let the linear strain tensor ε(u) be given by

εij(u) =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

.
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Then the variational form of our problem is: find u ∈ V such that for all v ∈ V

2 µ(ε(u), ε(v))L2(Ω)4 + λ(div u, div v)L2(Ω) = F (v), (2)

where

F (v) =

∫

Ω

f · v dx+

∫

∂Ω

g · v ds

and V = H1(Ω) is the Sobolev space of vector-valued functions with one generalized deriva-
tive 2. We assume that F (R) = 0 for any rigid body motion R. This ensures that (2) has a
unique solution modulo rigid body motions (which are assumed eliminated in computations
by suitable constraints).

2.1. Standard finite element formulation

Given a sequence of finite element subspaces {VN}, VN ⊂ V , we define the standard finite
element approximation to (2) as: find uN ∈ VN such that for all v ∈ VN

2 µ(ε(uN), ε(v))L2(Ω)4 + λ(div uN , div v)L2(Ω) = F (v).

We identify the parameter N as the dimension (or the number of degrees of freedom) of the
subspace VN .

2.2. Mixed finite element formulation

We define the new independent unknown p = −λ div u which is a multiple of the sum of
the normal stresses, σx + σy. (Note that as λ → ∞, this corresponds to the pressure in the
limiting Stokes equations). Then (2) can be written in the Hermann variational form [19]:
find (u, p) ∈ V ×W such that for all (v, q) ∈ V ×W

2 µ(ε(u), ε(v))L2(Ω)4 − (p, div v)L2(Ω) = F (v),

(div u, q)L2(Ω) +
1

λ
(p, q)L2(Ω) = 0,

(3)

where W = L2(Ω).
For the mixed finite element method, we assume that we are given a sequence of finite

element subspaces (VN ×WN) ⊂ (V ×W ). Then our problem becomes finding (uN , pN) ∈
(VN ×WN) such that, for all (v, q) ∈ (VN ×WN)

2 µ(ε(uN), ε(v))L2(Ω)4 − (pN , div v)L2(Ω) = F (v),

(div uN , q)L2(Ω) +
1

λ
(pN , q)L2(Ω) = 0.

As is well known [12], the accuracy of this method will not only depend upon how well
VN ,WN approximate V,W respectively, but also on the stability of the pairs (VN ,WN), i.e.,
the following inf-sup condition satisfied by them given by

inf
q∈WN

sup
v∈VN

b(v, q)

||v||H1(Ω) ||q||L2(Ω)

> α > 0, (4)

where the bilinear form
b(v, q) = −(div v, q)L2(Ω).

2Hk(Ω) will denote the usual Sobolev space of functions with k generalized derivatives on Ω, with L2(Ω) =
H0(Ω). H1(Ω) will be its vector analogue. The norm of Hk(Ω) will be denoted by ||.||k
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3. Non-conforming hp finite element discretization

We proceed by partitioning the domain Ω into S non-overlapping polygonal subdomains
{Ωi}

S
i=1, which are geometrically conforming by which we mean that ∂Ωi ∩ ∂Ωj (i < j)

is either empty, a vertex, or a collection of entire edges of Ωi and Ωj. In the latter case,
we denote this interface as Γij (i < j) and this will consist of individual common edges γ,
γ ⊂ Γij. Let us then define the interface set Γ to be the union of the interface intersections
∂Ωi∩∂Ωj (i < j), which result in a non-empty Γij. We further subdivide Ωi into triangles and
parallelograms by regular families of meshes {T i

h}. Let the maximum size of the triangulation
of subdomain Ωi be hi. Also let h = max

16i6S
{hi}. Note that the triangulations over different

Ωi are independent of each other, with no compatibility enforced across interfaces.
In this formulation only the displacement will be computed in a constrained space while

the pressure is not subjected to any particular continuity constraints. For K ⊂ IR2 and
k > 0 integer, let Pk(K) denote the set of polynomials of total degree 6 k on K while
Qk(K) denotes the set of polynomials of degree 6 k in each variable. Denote Qk(K) =
Qk(K) × Qk(K). Let k be a degree vector, k = {k1, k2, . . . , kS} which specifies the degree
used over each subdomain and denote k = min

16i6S
{ki}.

Let us now assume that the following local families of piecewise polynomial displacement
and pressure spaces are given on Ωi:

Vi
h,ki

= {u ∈ H1(Ωi)
∣

∣ u|K ∈ Qk(K) for K ∈ T i
h , u = 0 on ∂Ωi ∩ ∂Ω},

W i
h,ki

= {q ∈ L2(Ωi) | q|K ∈ Pk−1(K)}.

The combination Qk/Pk−1 has been shown to be uniformly divergence stable by Bernardi and
Maday in [9]. In addition Stenberg and Suri have identified several other stable pairs [26].

Definition 3.1. We now define a non-conforming space

Ṽh,k = {u ∈ L2(Ω)
∣

∣ u|Ωi
∈ Vi

h,ki
}.

Note that Ṽh,k 6⊂ H1(Ω) and hence cannot be used for finite element calculations.
We now define two separate trace meshes on Γij, one from Ωi and the other from Ωj (since

the meshes T i
h are not assumed to conform across interfaces). In addition to the meshes, the

polynomial degrees may also be different across interfaces. Given u ∈ Ṽh,k, we denote the
traces of u on Γij from each of the domains Ωi and Ωj by ui and uj, respectively. Then we
can define the global non-conforming displacement space to be

Vh,k =

{

u ∈ Ṽh,k

∣

∣

∫

γ

(ui − uj) χds = 0 ∀χ ∈ S
γ,ij
h,k ∀ γ ⊂ Γij ⊂ Γ

}

,

where S
γ,ij
h,k is a space of Lagrange multipliers for each edge γ ⊂ Γij. (Note that Vh,k ⊂ Ṽh,k

and it enforces the inter-domain continuity in a weak sense). In the mortar finite element
method (see References [3,8,10,24] and the references therein) the Lagrange multiplier space
S

γ,ij
h,k is defined in the following way. Let the mesh T i

h induce a mesh T i
h (Γij) on Γij. Let

γ ⊂ Γij and denote the subintervals of this mesh on γ by Il, 0 6 l 6 M .

Definition 3.2. Let,

Sγ,ij
h,k = {χ ∈ C(γ)

∣

∣ χ|Il
∈ Pki

(Il), l = 1, . . . ,M − 1; χ|Il
∈ Pki−1(Il), l = 0,M}.
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Then we set the Lagrange multiplier space to be S
γ,ij
h,k = Sγ,ij

h,k × Sγ,ij
h,k . Note that imposing

the mesh and degree on Sγ,ij
h,k from the domain Ωi as has been done here is quite arbitrary,

and these can be taken from the domain Ωj as well, without changing the results obtained.
More choices for the Lagrange multiplier space can be found in [25].

The global pressure space is given by

Wh,k =
{

q ∈ L2
0(Ω)

∣

∣ q|Ωi
∈ W i

h,ki

}

.

This space is provided with the L2(Ω) - norm while the global displacement space is endowed
with a discrete Hilbertian broken norm

||u||2
∗

=
S

∑

i=1

||u||2
H1(Ωi)

.

Note that the spaces Wh,k and Vh,k then satisfy the following approximation results [2, 7]:

Lemma 3.1. For all q ∈ L2(Ω) with qi = q|Ωi
∈ H l(Ωi) and for ν = min(l, k), we have

inf
qh,k∈Wh,k

||q − qh,k||L2(Ω) 6 C
S

∑

i=1

hν
i

kl
i

||qi||Hl(Ωi). (5)

Lemma 3.2. Let v ∈ H1(Ω) with vi = v|Ωi
∈ Hl+1(Ωi), l >

1
2
. Then for ν = min(l, k)

inf
vh,k∈Vh,k

||v − vh,k||∗ 6 C

S
∑

i=1

hν
i

kl
i

| log ki|
1

2 ||vi||Hl+1(Ωi). (6)

The mortar hp finite element discretization to (2) is then given as follows:
find (uh,k, ph,k) ∈ Vh,k ×Wh,k satisfying

aS(uh,k,v) + bS(v, ph,k) = (f ,v),

bS(uh,k, q) −
1

λ
(ph,k, q) = 0,

(7)

where the bilinear forms

aS(u,v) = 2µ
S

∑

i=1

(ε(u), ε(v))L2(Ωi)4 ,

bS(v, q) = −

S
∑

i=1

( div v, q)L2(Ωi).

The existence and uniqueness for this problem can be shown by proving continuity and
coercivity of the bilinear forms aS(·, ·) and bS(·, ·). The problem (7) has a unique solution
if the following discrete inf-sup condition holds (see [7] for more details): There exists a
constant α′ such that

inf
qh,k∈Wh,k

sup
vh,k∈Vh,k

bS(vh,k, qh,k)

||vh,k||∗ ||qh,k||L2(Ω)

> α′ > 0. (8)

From (5), (6) and (8) we then have the following global convergence error estimate:
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Theorem 3.1. Let the exact solution (v, q) ∈ H1
0(Ω) × L2

0(Ω) satisfy vi = v|Ωi
∈

Hl+1(Ωi) and qi = q|Ωi
∈ H l(Ωi) for i = 1, · · · , S. Then for ν = min(l, ki) and α′ given by

(8) the discrete solution satisfies

||v−vh,k||∗+α(λ) ||q−qh,k||L2(Ω) 6 C

S
∑

i=1

hν
i

kl
i

(

| log ki|
1

2 ||vi||Hl+1(Ωi) + α(λ) ||qi||Hl(Ωi)

)

. (9)

The precise choise for α(λ) is derived in [7]. We then have the following estimates for pure
h-version and p-version.

Corollary 3.1. For a fixed polynomial degree ki = k in (9), the following rate of con-
vergence for the pure h-version holds:

||v − vh||∗ + α(λ) ||q − qh||L2(Ω) = O
(

hmin(l,k)
)

.

Note that for the non-conforming method, we get a rate of O(hk) when the solution is
smooth enough. Our numerical experiments presented in the next section clearly exhibit
this convergence behavior.

Corollary 3.2. For h fixed in (9), the following p-version estimate holds:

||v − vk||∗ + α(λ) ||q − qk||L2(Ω) = O
(

k−l
i | log ki|

1

2

)

.

Although the estimate is quasi-optimal by the pollution term
√

| log ki|, it is very useful in
practice for hp computations.

4. Mixed formulation with mortars

Consider the L-shaped domain in Fig. 1. It is somewhat cumbersome to implement the
non-conforming method (7) due to the constraints

∫

γ

(ua − ub) χds = 0 ∀χ ∈ S
γ
h,k.

Let us now present a mixed formulation that can be viewed as a convenient method of
practically implementing (7). In fact, this has been implemented in Section 5 to perform
our numerical experiments. Let us define

σij = λ div u δij + 2 µ εij(u).

Our problem then becomes solving for ur, r = a, b that satisfy

−σr
ij,j = f r

i in Ωr,

pr = −λ div ur in Ωr,

ur
i = 0 on ∂ΩD

r /Γ,

∂ur
i

∂n
= gr

i on ∂Ωr/(Γ ∪ ∂ΩD
r ) = ∂ΩN

r ,

(10)
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Ωa

Ωb

Γ

Figure 1. L-shaped domain divided into Ωa and Ωb with interface Γ

where i, j ∈ 1, 2. Here ∂ΩD
r is the portion of ∂Ωr where zero Dirichlet boundary conditions are

specified and ∂ΩN
r is the portion of ∂Ωr where Neumann boundary conditions are specified.

These equations are to be solved in conjunction with the continuity condition enforced on the
trace of the solution on Γ given by ua

i = ub
i on Γ. Let us now define the Lagrange multipliers

(for r = a, b) to be

λr
1 = −(σr

11n1 + σr
12n2), λr

2 = −(σr
21n1 + σr

22n2).

The weak variational form of (10) in the finite dimensional setting then becomes: find the
displacements ur = (ur

1, u
r
2) ∈ Vr

N ⊂ H1
0(Ωr), the pressure pr ∈ W r

N ⊂ L2(Ω) and the

Lagrange multipliers λr = (λr
1, λ

r
2) ∈ Sr

N ⊂ (H
1

2

00(Γ))′ such that,

2µ

∫

Ωa

ua
1,1 v

a
1,1 dx+ µ

∫

Ωa

(ua
1,2 + ua

2,1) v
a
1,2 dx−

∫

Ωa

pa va
1,1 dx+

∫

Γ

λ1 v
a
1 ds

=

∫

Ωa

fa
1 v

a
1dx−

∫

∂ΩN
a

pa n1 v
a
1 ds+

∫

∂ΩN
a

(2µua
1,1n1 + µ(ua

1,2 + ua
2,1)n2) v

a
1 ds,

2µ

∫

Ωa

ua
2,2 v

a
2,2 dx+ µ

∫

Ωa

(ua
1,2 + ua

2,1) v
a
2,1 dx−

∫

Ωa

pa va
2,2dx+

∫

Γ

λ2 v
a
2 ds

=

∫

Ωa

fa
2 v

a
2dx−

∫

∂ΩN
a

pa n2 v
a
2 ds+

∫

∂ΩN
a

(µ(ua
2,1 + ua

1,2)n1 + 2µua
2,2n2) v

a
2 ds,

2µ

∫

Ωb

ub
1,1 v

b
1,1 dx+ µ

∫

Ωb

(ub
1,2 + ub

2,1) v
b
1,2 dx−

∫

Ωb

pb vb
1,1dx−

∫

Γ

λ1 v
b
1 ds

=

∫

Ωb

f b
1 v

b
1dx−

∫

∂ΩN
b

pb n1 v
b
1 ds+

∫

∂ΩN
b

(2µub
1,1n1 + µ(ub

1,2 + ub
2,1)n2) v

b
1 ds,
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2µ

∫

Ωb

ub
2,2 v

b
2,2 dx+ µ

∫

Ωb

(ub
1,2 + ub

2,1) v
b
2,1 dx−

∫

Ωb

pb vb
2,2dx−

∫

Γ

λ2 v
b
2 ds

=

∫

Ωb

f b
2 v

b
2 dx−

∫

∂ΩN
b

pb n2 v
b
2 ds+

∫

∂ΩN
b

(µ(ub
2,1 + ub

1,2)n1 + 2µub
1,1n2) v

b
2 ds,

∫

Ωa

div ua qa dx+
1

λ

∫

Ωa

pa qa dx = 0,

∫

Ωb

div ub qb dx+
1

λ

∫

Ωb

pb qb dx = 0,

∫

Γ

ua
1 ψ1 ds−

∫

Γ

ub
1 ψ1 ds = 0,

∫

Γ

ua
2 ψ2 ds−

∫

Γ

ub
2 ψ2 ds = 0,

where we have used the fact that the solution is smooth in the interior and therefore we set
λa

1 = −λb
1 = λ1 and λa

2 = −λb
2 = λ2.

As the next natural step in the finite element procedure, we define basis functions for
each of the finite dimensional spaces Vr

N ,W
r
N ,S

r
N and express the unknowns u, p, λ as a

linear combination of the respective basis functions. Choosing the test functions to be
basis functions themselves then convert the above system of integral equations into a matrix
system that is solved for the unknowns u, p, λ.

5. Numerical results

In this section, we investigate the computational performance of the non-conforming method
introduced in this paper for both h and p refinements. We used the mixed form described in
the last section to implement the model problem.

�
��
(0,0)

B

C

A

O

D

θ
r

Ω

Ω1 Ω2

(b)(a)

Figure 2. (a) L-shaped domain (b) Tensor product mesh for m = n = 2

For our model problem, we let our domain be the L-shaped domain Ω, shown in Fig. 2.
This domain is subdivided into two rectangular subdomains Ω1 and Ω2 by the interface AO.
In our experiments, we consider tensor product meshes, where Ω2 is divided into n2 rectangles
and Ω1 is divided into 2m2 rectangles (see Fig. 2). Since the mesh on Ω1 is symmetric about
y = 0, in the sequel we only describe the mesh on the top half.
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We solve (2) or (3) with f = 0 and tractions g specified on the boundary by

g1(x, y) =
8(x− x0)(y − y0) [(y − y0)

2 − (x− x0)
2]

[(x− x0)2 + (y − y0)2]3
n2

+
4(x− x0)

2 [3(y − y0)
2 − (x− x0)

2]

[(x− x0)2 + (y − y0)2]3
n1,

g2(x, y) =
8(x− x0)(y − y0) [(y − y0)

2 − (x− x0)
2]

[(x− x0)2 + (y − y0)2]3
n1

+
4(y − y0)

2 [(y − y0)
2 − 3(x− x0)

2]

[(x− x0)2 + (y − y0)2]3
n2.
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Figure 3. h-version convergence for displacement over uniform meshes
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Figure 4. h-version convergence for pressure over uniform meshes
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Here (n1, n2) is the outward unit normal on ∂Ω. The exact solution is given by [20]

u1(x, y) =
(x− x0) [(λ+ 2µ)(x− x0)

2 − λ(y − y0)
2]

µ(λ+ µ) [(x− x0)2 + (y − y0)2]2
,

u2(x, y) =
(y − y0) [λ(x− x0)

2 − (λ+ 2µ)(y − y0)
2]

µ(λ+ µ) [(x− x0)2 + (y − y0)2]2
.

Note that λ and µ are defined in terms of E and ν by (1). We take E = 1 and ν = 0.3 for
our computations. Also, (x0, y0) is a point outside Ω.

First we consider the h-version of the non-conforming method on uniform meshes. We
let (x0, y0) = (1.0,−1.0) which yields the case of a smooth solution. We take (m,n) =
{(2, 2), (3, 3), · · · , (6, 6)} for fixed polynomial degrees k = 2, 3, 4, 5. Figures 3 and 4 clearly
demonstrate O(hk) convergence rate as expected in Corollary 3.1.
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Figure 5. p-version convergence for displacement over geometric meshes
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Figure 6. p-version convergence for pressure over geometric meshes
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Next we let (x0, y0) = (0.1,−0.1). Note that this will yield a near-singular solution. We
take m = n = 2, and along the x and y axes, take the grid points

x0 = 0, xj = σn−j
i , j = 1, . . . , n,

where σi is the geometric ratio used on Ωi. For this experiment, we consider the combinations
(σ1, σ2) = {(0.22, 0.22), (0.18, 0.18), (0.18, 0.22)}. Note that the first two choices yield a
conforming method while the last choice makes the method non-conforming. We increase
the polynomial degree k = 2, · · · , 8 to improve the accuracy. The results for the displacement
and pressure are illustrated in Figures 5 and 6 respectively. These figures clearly demonstrate
that we not only get good convergence rates but also that the convergence rates obtained
by employing the non-conforming method {(0.18, 0.22)} do not deteriorate and are not any
worse than those obtained from the conforming methods {(0.22, 0.22), (0.18, 0.18)}.

The numerical results presented are in good agreement with the theoretical results and
clearly indicate that the mortar finite element method is a robust and viable domain decom-
position technique for the elasticity problem. One can extend the current study to materials
that are almost incompressible (Lamé constant λ close to ∞, i.e., Poisson ratio ν close to
0.5) and consider the effects of locking. This aspect will be the focus of a following paper.
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