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Abstract-The motivation of this work is to apply the hpversion of the mortar finite-element 
method to the nearly incompressible elasticity model formulated as a mixed displacement-pressure 
problem as well as to Stokes equations in primal velocity-pressure variables. Within each subdomain, 
the local approximation is designed using div-stable /m-mixed finite elements. The displacement 
is computed in a mortared space, while the pressure is not subjected to any constraints across the 
interfaces. By a Boland-Nicolaidee argument, we prove that the discrete saddle-point problem satisfies 
a BabusbBrezzi inf-sup condition. The inf-sup constant is optimal in the sense that it depends only 
on the local (to the subdomains) characteristics of the mixed finite elements and, in particular, it 
does not increase with the total number of the subdomains. The consequences, that we are aware of, 
of such an important result are twofold. 

l The numerical analysis of the approximability properties of the hpmortar discretiaation for 
the mixed elasticity problem allows us to derive an asymptotic rate of convergence that is 
optimal up to m in the displacement; this is addressed in the present contribution. 

l When the mortar discrete ‘problem is inverted by substructured iterative methods based on 
Krylov subspaces with block preconditionem, in view of the results for conforming finite 
elements [l], the condition number of the solver should grow logarithmically on (p, h) and 
not depend on the total number of the subdomains. 

@ 2003 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION AND NOTATIONS 

It is widely admitted that the hpversion of the finite-element method is well suited for the 
numerical simulation of the solutions of elliptic partial differential equations like the Poisson, 
Stokes, or elasticity problem set on nonsmooth domains (see [2-41). A particular design of the 
meshes (e.g., geometrical meshes) may achieve a convergence of the computed solution towards 
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the exact one exponentially fast with respect to the total number of the degrees of freedom 
(see [5-71). 

Using the hptechnique with the mortaring method (see [8]) allows us to handle local conform- 
ing/global nonconforming meshes, which highly increases the flexibility of the approximation 
and then reduces the complexity of the engineering work. A complex domain may be broken 
up into several smaller components, taking into account some objective criteria (e.g., the local 
solution’s behavior, the availability of efficient solvers on simply shaped subdomains). Each of 
them is meshed independently and the grids are matched together by mortaring projections with- 
out reducing the performances of the local discretizations. Another useful advantage, especially 
important, of the mortar methods involves the adaptivity. That, for some reason, a refinement is 
needed somewhere in the computational domain, the possibility offered by the mortar procedure 
to handle nonmatching grids may limit the contamination as it may be stopped against the in- 
terfaces of the decomposition making the refining process confined to only a small region (maybe 
only one small subdomain). 

The original work on the hp-mortar finite-element method was developed by Seshaiyer and Suri 
(see [9]) for the Poisson problem where they piece together the discrete solution in the way it was 
done for the h-version (see [S,lO]). Th e numerical analysis carried out in [9] led to a suboptimal 
(by p314) error estimate far from optimality, while computational evidences did not detect any 
significant deterioration of the accuracy compared to the expected optimal rate (see [ll]). In [12], 
a bootstrapping argument applied to the continuous and discrete linear resolvents of the Poisson 
problem improved the convergence estimate as the polluting term is reduced to p’. However, such 
a technique could fail in some interesting situations. Indeed, the Hilbertian interpolation argu- 
ment involved in the bootstrapping does not work when the resolvent of the problem considered is 
not linear (e.g., Navier-Stokes or unilateral contact problem). Besides, it is well known that such 
a process should be handled with great care for null-spaces of some partial differential operators, 
defined on nonsmooth domains (see [13]). A part of this work (mainly Appendix A) is dedicated 
to an alternative and direct proof of the results of [12] that avoids the bootstrapping and reduces 
the loss to Jfogp. The error estimate of the best approximation by mortared hpfinite element 
functions proven here is very useful when applying the hp-mortar method to more compIicated 
problems such as the Stokes, the mixed elasticity, or the fluid-structure interaction models. 

The extension of the mortar element method to the incompressible Stokes equations (which 
covers the mixed elasticity problem as well) is realized in [14] for h-finite elements and in [15] 
for spectral elements. After setting a variational mixed formulation of the system written in 
the velocity-pressure primitive variables, the approximated spaces are constructed using local 
div-stable mixed finite or spectral elements. The computed velocity satisfies some “mortar” 
matching conditions on the interfaces while the pressure is free of any constraints. In both papers 
quoted above, an inf-sup condition is proven with a constant independent of the discretization 
parameter: h the mesh size for the h-finite elements and N the degree of the local polynomials for 
the spectral elements. This made it possible to exhibit error estimates with the expected behavior 
with respect to h or N, which was the main aim of those first pieces of work. Now, when using 
some preconditioned iterative algorithms such as the conjugate gradient Uzawa procedure with 
the mass matrix preconditioner (see [16]) or the preconditioned conjugate residual method with 
a block diagonal preconditioner (see [1,17,18]), an important question comes to mind. Does 
the inf-sup constant-or equivalently the condition number of the sohr--hmxse with the total 
number of the subdomains? The present contribution provides a negative answer. This has an 
important impact on the rate of convergence of those algorithms, especially when a large number 
of subdomains are used. 

The outline of the paper is as follows. The next section is a discussion of the mixed variational 
formulation of the nearly incompressible elasticity problem and of the Stokes problem. After 
the description of the domain decomposition features in Section 2, the mortared space where 
the velocity is computed so that the pressure space can be constructed. They are based on 
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local div-stable hp-finite elements. In view of the numerical analysis of the method, we provide 
some important approximation results. In particular, a “quasioptimal” convergence rate is given 
in Proposition 3.1 of the best approximation error of regular velocities by mortared functions. 
The proof requires technical estimates which are detailed in Appendix A. The setting of the 
discrete saddle-point problem closes thii section. Section 3 is devoted to the study of an inf-sup 
condition between the mortared velocity space and a reduced pressure space, with a constant that 
is independent of the discretization parameters (h, p) and of the total number of the subdomains. 
Such a fundamental result allows us, thanks to the Boland-Nicolaides argument, to derive an 
optimal inf-sup condition linking the discrete velocity and pressure space which is addressed in 
Section 4. The last section shows the existence and uniqueness of the approximated solution and 
provides the optimal convergence rate towards the exact solution. 

Notations 

Let a Lipschitz domain C c W2 be given and the generic point of C is denoted z. The classical 
Lebesgue space of square integrable functions L2(C) is endowed with the inner product 

and L;(C) is the subspace of L2(C) involving the functions of zero average. We use the standard 
Sobolev space notations, H”“(C), m 2 1, provided with the norm 

where (Y = ((~1, ~2) is a multi-index in N2 and the symbol 8” represents a partial derivative. The 
fractional Sobolev space Hr (C), T E lR+ \ N, is defined by its norm (see [19,20]) 

where T = m+6, m, and 0 E IO, l[ being the integer part and the fractional part of T, respectively. 
The closure in H’(C) of the set ‘D(C) of indefinitely differentiable functions whose support is 
contained in C is denoted H,‘(C). 

For any portion of the boundary 7 c aC, the space H ‘i2(r) is the set of the traces over y of all 
the functions of HI(C) and H-‘/2(y) is its topological dual space. The duality pairing between 
H-‘/2(y) and H1i2(y) is (.,.)*,-,. The special space H,$‘(y) is the subspace of H1i2(y) of the 
traces of all functions belonging to Hi(C, ye) = {Ic, E H’(C), $qrc = 0}, where yc = aC \ y. It is 
endowed with the quotient norm 

For any functional space X(C), the bold symbol X(C) stands for the product X(C) x X(C) so 
that, for instance, H’(C) = H’(C) x H’(C) or &i2(r) = H::‘(y) x Hii2(y). The natural norm 
of X(C) is denoted by ](.]Jx(c) and in the case where X(C) is a Hilbert space, the inner product 
is (.,.)X(C). 
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2. ALMOST INCOMPRESSIBLE 
MIXED ELASTICITY PROBLEM 

The problem of linear elasticity we shall consider consists of determining the displacement u, 
supposed to be small, of a given isotropic and homogeneous elastic material occupying the initial 
configuration R whose boundary is denoted P. The solid Cl is subjected to an external force 
f E L2(sZ) and is assumed to be fixed along the whole boundary, which may be viewed as the 
‘LWorst” case with respect to the analysis we carry out. Indeed, regarding the inf-sup condition we 
are going to deal with, on both continuous and discrete levels, it is well known that Dirichlet type 
conditions give rise to more technicalities than any other type of classical boundary conditions 
(Neumann, Robin, . . . , etc.). The mathematical setting of the plain strain model is as follows 
(see [21,22]): find u E H,‘(n) svch that 

2/d&(u), dv))~qnp + A(divu, divv)LZ(o) = (f, t~)~~(~), vu E H;(n), (2.1) 

where e(v) = (l/2) (VW + (VV)~) is the linearized strain tensor and (X,/J) are the Lame coeffi- 
cients. It is known for practitioners that near the incompressibility limit X + +oo (or equivalently, 
when the Poisson modulus v = X/2(X + p) approaches l/2), the finite-element discretization of 
the variational problem (2.1) suffers from the “numerical locking” phenomenon (see [23]). This 
is particularly observed as lower degree finite elements are used which is the case not only for the 
h-version but also for the hpversion, in particular near the corners. Indeed, the hpfinite elements 
are efficiently used (to achieve exponential convergence of the method) when at the immediate 
vicinity of the corner a fine “geometrical” mesh is combined with low degree finite elements- 
h and p are small-(see [5-7,241) which may generate a numerical locking. The reason why such 
a phenomenon occurs is the inability of the discrete space to accurately approximate u while 
satisfying the incompressibility (divu = 0). Several strategies have been designed to overcome 
locking (see [21]), among which the most popular is the mixed formulation of problem (2.2) ,(2.3). 
This allows us to reduce the severity of the constraint (divu c 0) by enforcing it only weakly. 
Setting (p = -(A div a) E L;(n)) called the “pressure” and considering it as an independent 
unknown, we obtain the Hermann variational system: find u E Hi(a) and p E L;(O) such that 

3444, +h2(n)4 + b(V,P) = (f 7 hqn) I Vu E H;((R), (24 

b(U, 4 - ; b-4 Q)L2(f2) = 0, vq E L;(n). 

The bilinear form b( ., .) defined over Hi(Q) x L:(R) is given by 

b(v, q) = -(div v, q)La(n). (2.4) 

By means of Korn’s inequality, the bilinear form (E(.), E(.)) dad is Hi(R)-elliptic; in addition, 
b(., .) satisfies an inf-sup condition with a positive constant a! (see [25]) 

b(v,d > rr 
!7&-oyEs~o~q Il+z~(n,Il~llL~(n, - . (2.5) 

Using the Brezzi’s saddle-point theory (see [21,25]), problem (2.2),(2.3) is well posed and has a 
unique solution (u,p) E H,‘(Q) x L:(O). M oreover, the following stability condition holds: 

Il+zyn) + a + ; IIPIILqn) ( > I Cllf lb(n). 

REMARK 2.1. INCOMPRESSIBLE STOKES PROBLEM. In the limit situation X = +oo, the term 
(l/A) (p, q),p(n) is canceled and problem (2.2),(2.3) boils down to the Stokes equations modeling 

. 
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an incompressible fluid flow, where ~1 is the viscosity, u the velocity, and p the pressure of the 
fluid: find u E H,‘(n) and p E L;(R) such that 

Vu E H;(n), 
vq E L;(n). 

(2.6) 

(2.7) 

The mortar finite-element discretization proposed and analyzed here is still valid for this case 
and automatically provides similar convergence rates. So the results proven hereafter still hold 
for the Stokes problem. In addition, problem (2.2),(2.3) with large value of X may be viewed 
as a stabilization process of some unstable approximation of (2.6),(2.7) and may ensure fast 
convergence of some iterative method (see [26]). 

3. THE MORTAR lipFINITE-ELEMENT METHOD 
This section is a description of the approximation of problem (2.2),(2.3) by hp-mixed finite 

elements of degree T E N (taken instead of p to avoid confusion with the pressure). To omit 
heavy technicalities which are not necessary for our purpose so as to focus on the div-stability 
in the nonconforming domain decomposition context (which is the core of the paper), we shall 
consider only hpfinite elements that have proved to be uniformly stable in the conforming case. 

The framework of the mortar element method (see [S]) p roceeds by breaking up the domain 52 
into C’ nonoverlapping subdomains that are assumed polygonally shaped for simplicity. We 
examine only conforming decompositions, that is, when they are considered as macromeshes and 
the subdomains as macroelements such that the intersection of two closed subdomains & n fit 
is either empty, reduced to a common vertex, or to a common edge. If RI, and Sle are adjacent 
along a common edge, it is denoted l?ke, its extreme points are {CL,, c”,,,, and ‘r&e is the unit 
normal vector oriented from fik towards fit so that n& = -nke. Clearly, Ike is meaningless 
when flk and !& do not share any common edge, and for convenience k is the set of indices e # k 
so that l?ke exists. Additionally, it is current to assume that the portion of a& contained in afl 
is supposed to be a union of complete edges. When needed, nk specifies the outward normal on 
the whole boundary a&. We will denote both Pke and P& by Pke where k < e. 

The mortar approximation of the mixed elasticity and/or Stokes problem is based on a local use 
of, e.g., the finite-element lPT/P,.-l which is uniformly div-stable (see [27]). Possible alternatives 
consist of taking the uniformly div-stable Bernardi-Maday mixed element P,,r/Pl,,l with T < 1, 
or again the (nonuniformly) div-stable Taylor-Hood mixed element P,./P,.-r (see [28]) or for the 
h-version, Bercovier-Pironneau PrisoPz/Pi element, Crouzeix-Raviart or Arnold-Brezzi-Fortin 
bubble finite elements (see 121,251). The discretization used in the subdomain flk is specified by 
the parameter bk = (hk,‘rk) where hk is supposed to decrease to zero and Tk to increase to infinity 
and we set 6 = (6r,..., &*). For any k (1 5 k 5 k*), we define a quadrangular partition $ 
of &. The maximum size of this triangulation is hk. This mesh is assumed to be regular in 
the classical sense [22] and let us denote, for any IE E Tk, 6 F, the invertible aiiine transformation 
mapping the reference square Ft. = [0, 112 into IE. Notice that (yi)k are generated independently 
and there is no reason why two meshes of neighbor subdomains should coincide at the interface. 
For any K E ‘$ and any T E N, P,,(K) stands for the set of polynomials of degree 5 T in each space 
direction while Pr(a) is the set of polynomials of total degree 5 T. The local velocity spaces are 
then chosen to be 

The local discrete pressure space is defined as follows: 
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Given these tools, the approximation (v6,q6) is taken locally in X6(&) x Q6(n,) SO that u6 = 
(wf)ilklk. are glued together across the interfaces by some suitable matching conditions. Making 
these conditions explicit requires the use of a finite-element space built on the interfaces. Each 
!?ke inherits a one-dimensional partition t,, b from either Tt or Ti, let us say from ‘$ for k < e 
(the trace of ‘Ji on l?kl is denoted t&). It is assumed to be an (M)-mesh in the sense of Crouzeix- 
Thorn&e (see [29]). 

Let t6 = uih, ti be a given lD-mesh, where ti and ti+l are neighbors for any i (0 5 i < i* - 1). 
Setting h = SUP,<,<~. Iti], t6 is said to be an (M)-mesh if -- 

!!!! < cpr, 
hl - 

vi,j (0 I i,j 5 i*)) (3.1) 

where 1 < ,O < (r + 1)2 and C does not depend on h. 
Then, for the enforcement of the nonconforming matching conditions, we need to introduce 

the space of Lagrange multipliers on each I’ke 

j@(rkt’) = {@ E f! (fkt) , vt E tie, $‘ft E PT,(t), $$ E P,,-,(t) if c& E t or c$ E t > 
, 

and we set @(rke) = M’(&) x M’(rke). By a duality argument, it can be proven that 
the following estimate holds: for any u 2 l/2, there exists a constant C such that: VP E 
w-1/2(rke), 

V6E$(rrr) IlQ - ~611~-‘,l(rkt) 5 cz IIwf~-‘~~(rkt) (3.2) 

with n = min(v, r). The global nonconforming velocity approximation space is then given by 

P(O) = d = (v;t), E L2(i2), such that vi E X’(@$) and : Vlc,e 

The discrete space for the pressure is defined to be 

Q6(V = {q6 = (d)k E J%% !7; E &‘?fik)}. 

The space Q6(s2) is provided with the L2(0)- norm while the space X?(a), not being embedded 
in Hi(O), is then endowed with the Hilbertian broken norm 

lb611* = (5 llafl~nk,) 1’2 * 
k=l 

REMARK 3.1. Let us stress the fact that only the velocity space is mortared while the pressure is 
not subjected to. any particular constraints across the interfaces. The family (r,&<[ equipped 
with the meshes (t&)k,e are the mortars; they are nonmortars when endowed with (t&)k<& and 
the functions @ 6- 6 - (vk,rkl )k<e are the mortar functions. 

The space Q6(s2) satisfies the following approximation result [2]: Vq c$ L:(R) with qk = qln, E 

with 7]k = min(vk,rk). So far, when the meshes (t6,,)k<e satisfy the (M)-mesh criteria (3.1), the 
only known approximation rate by the functions of X6(0) is given in [9] and it is suboptimal 
(actually polluted by a ri’4 -factor). At the expense of a technical work, it is possible to recover 
the “quasioptimality” where the pollution term can be reduced to a ] logrk]1/2. 
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PROPOSITION 3.1. Assume that 21 E Hi(s2) wjth Vk = vln, E H”k+l(flk), vk > l/2, 

(3.4) 

with 7]k = min(Vk,rk). 

PROOF. As noticed in [9] for the @version of the mortar finite-element method, and earlier 
in [8] for the h-version, this estimate is primarily dependent on the approximation quality of the 
mortar projection ?& ranging H’(Pke) on the space 

W’(rkl!) = {& E e (rkl) , Vt E &, X&t E p&j} = X6@k),rkt 

and defined as follows: Vx E H’(rke), 

“LX(C) = x(4 vc E {&, 4,) 7 

We need in particular to evaluate the error ]]x - &x]]~;,/~~~,,) for x E HVk+1’2(Pk[) because, 

following [8] (see also [12, Proof of Lemma 4.3]), the convergence rate of inf,s,X6Cn) ]]v - v6]]* is 
exactly of the same order. As the proof of such a result requires a lot of technical manipulations, 
it is postponed to Appendix A, Theorem A.2.1. I 
REMARK 3.2. Recall that the local spaces @(ok) rl L%(a) and X6(&) fl@(52) satisfy an inf- 
sup condition with a constant ok that is independent of bk = (hk, rk) (see [27]). This means that 
for any qt E @(ok), there exists vf E X6(&) ll @(ok) such that 

- (divvkd)L2cRkJ = Il4l;z(n*) ’ 
ak k&qnk~ 5 llq&,yn,, . 

(3.6) 

We are now in position to investigate the discrete version of the mixed problem (2.2),(2.3) 
which is written as: find (u6,p6) E X!(O) x Q&(n) satisfying 

a (dv6) + b(vV) = (f,v6)L2(n) 1 vu6 E X6(R), (3.7) 

b(4q6) - ; (P6d&,2(,) = 0, Vq6 E Q6(R). (3.8) 

In (3.7),(3.8), we have set: Vd,d E X’(a), Vq6 E Q6(s2), 

k=l 

and b(vs,q6) = -g(divv&qf)L2cn,j. 
k=l 

Actually b( ., .) is an extension of the bilinear form (2.4) and is still denoted b( ., .). The existence 
and uniqueness result for this problem depends on the bilinear forms a( ., .) and b( ., .). They are 
both trivially continuous. Adapting the proof of [8] of the PoincarbF’riedrichs inequality and 
using the Korn’s inequality, it is not hard to show that a(., .) is elliptic on X6(n) with a constant 
uniformly bounded from below (see [S]). The principal remaining point is the verification of a 
uniform inf-sup condition on b(., .). We resort to Boland and Nicolaides’ argument [30] which 
reduces the problem to an evaluation of local inf-sup conditions which are readily checked in (3.6) 
and to the proof of a global inf-sup condition on a smaller discrete pressure space. This issue is 
addressed in the following section. 
REMARK 3.3. In practice, the bilinear forms, a(., .), b( ., .), and (. , .)LZ co), involved in the discrete 
equations are evaluated using some suitable numerical integration methods such as, e.g., the 
Gauss-Lobatto-Legendre quadrature rule. Trivially, doing so introduces a new error source. This 
contribution to the error may be taken into account using classical techniques (see [31]) which 
is not that hard (that is why we prefer to avoid such a concern). However, the most important 
point to be retained is that the final asymptotic convergence rate is preserved. 
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4. OPTIMAL inf-sup CONDITION ON 
A REDUCED PRESSURE SPACE 

It is stated in [14, Theorem 4.21 that an inf-sup condition links the space X6(a) and the 
finite-dimensional space of piecewise constant pressures 

9(Q) = 
i 

!I = (Qk) E R”‘, (ci,l)P(sl) = ~4kDk, = 0 , 
k=l 1 

with a constant that does not depend on the parameter 6. The only question that remains 
regards the behavior of that constant versus the total number of the subdomains. Such a result 
is very useful in the analysis of some iterative preconditioned algorithms when applied to solve the 
discrete problem (3.7),(3.8) (see [1,17,18]). Th e subject of the sequel is to discuss an alternative 
and shorter proof which allows us to show that the inf-sup constant could be chosen so that it 
does not increase with the total number k* of the subdomains. 

PROPOSITION. There exists a constant d independent of the discretization parameter 6 as well 
as the total number k* of subdomains so that the following inf-sup condition holds: 

(4.1) 

PROOF. Since the inf-sup condition (2.5) holds in the continuous case, an equivalent statement 
of the proposition is that .for any v E Ho((R), there exists v6 E X6(R) such that 

b (v - v6,Q6) = 0, Vd6 E cm), (4.2) 

7 llv611* I ll4lH’cnb (4.3) 

where y > 0 depends neither on b nor on k*. Then the constant & could be taken equal to the 
product cry. Statements (4.2),(4.3) are established in three steps. 

(i) For any interface I’ke, let us choose Oie E P$‘ke)’ (the set of second degree polynomials 
that vanish at the end points of Ike) satisfying 

where Il@iltllH;~~~rkt~ is only dependent on the length of the edge I’ke. 
(ii) Let v be given in HA(a), and define ip6 E e(S)2 such that: V kl, 

It is clear that @rank E H’/2(dflk) and 

The constants ck and ck depend only on the size of Rk. Then, using a stable extension 
of the trace function ‘Pfs nk we construct vi E X6(&) of the minimal degree (= 2) whose 
trace on a Rk coincides with $, nh and satisfies the estimate (see [32, Theorem 5.11) 

(4.4) 



&Mortar Finite-Element Method 43 

(iii) Setting v6 = (wi)isk5k*, it is straightforward that v6 is continuous on the whole domain R 
and then belongs to X6(0). Because of (4.4), it is seen directly that (4.2) is valid with 
y = (maxkCL)- 1 which is dependent only on the shape of the subdomains and not their 
total number. Besides, by Green’s formula, we have: V@ E &(a), 

b (v - v6, Q”) = gl [$I s,,, (w - v”) .ndI’. 

The symbol [.] stands for the jump function. Since virrLI = @frL,, it becomes clear that: 
v Ice, 

s 
car (v - d) .ndI’ = 0, 

which completes the proof of (4.3). I 

REMARK 4.1. The result of the proposition is readily extended to arbitrary domain decomposi- 
tion using the same technical tools combined with those already developed in [15]. Since such a 
proof is very technical but does not require any new tools, we have chosen to consider only the 
simple case. 

5. BOLAND-NICOLAIDES ARGUMENT 
AND ERROR ESTIMATE 

Back to the global pressure space Q6(R), we intend to prove by the Boland-Nicolaides method 
an optimal mortar inf-sup condition between X6(n) and Q6(0). 

PROPOSITION 5.1. There exists a constant Q’ that depends only on the shape of the subdo- 
mains (Rk)l<k<k= so that the following inf-sup condition holds: -- 

(5.1) 

PROOF. It is made following the idea of [30]. Letting q6 = (qt)llklk. be in Q6(R), it may be 
decomposed as: V k( 1 5 k 5 k*), 

Since the function 4; E Q6(&) n Li(f&), there exists a function 6: E Xa(f&) n Hd((n,) ver- 
ifying (3.6). Then, we define the function d6 = (f$)i<klk*. Furthermore, by the previous 
proposition, we construct ti6 E X6(n) so that 

Next, we choose .ir6 = (tii)rlk<k* with tii = &+dkvk. -6 The coefficients (dk)r<ksk. are computed 
so that the mixed terms {(div@,&LZ(aL), 1 5 k 5 k*} vanish, and then 

dk = _ @iv@, &(ni). 

ll~~ll;~(nr) 
Taking v6 = .ir6 + @, it is readily checked that 

and ~‘ll~611~qq I llq611u(n) where CY’ may be chosen so that 

1 
a = z min( 1, ~5) min 

l<k<k* -- 

which depends only on the size of the subdomains. I 

The immediate consequence is the well-posedness of the discrete problem. Indeed, by the 
saddle-point theory, we have the following result. 
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PROPOSITION 5.2. The discrete problem (3.7),(3.8) has only one solution (u6,p6) E X6 x Q6(n) 
which is uniformly stable with respect to the data f, 

(5.2) 

In order to perform the analysis and to derive the convergence rate towards the exact solution, 
we adapt as is done in [33] (see also [14]) the approximation theory of the saddle-point problems 
to our nonconforming discretization. The consistency error, caused by the nonconformity of the 
mortar approach, is handled in a standard way using estimate (3.2) (cf. [8,12]). Besides, because 
the inf-sup condition of Proposition 5.1 is independent of 6, techniques used for standard h- 
finite-element approximation work & well. Indeed, the error of the best approximation of the 
velocity zd by vector-valued function of 

@(s-q = {v” E x6(~), b (v6, q6) = 0, Q6 E Q6W} 

is equivalent to that provided by the best fit of u by the functions of X’(n). This rate is 
quasioptimal as given in Proposition 3.1. Moreover, the approximation error is optimal for the 
p;essure (3.3). The final result is given by the following theorem. 

THEOREM 5.3. Assume that the exact solution (zG,~) E Hi((R) x L;(Q) Satisfies the regularity 
assumptions 

tbk = Ulnk E H”k+l(i-ik), Pk = ?-+-I, E H”‘@k), Vk (1 I k 5 k*). 

Then the discrete solution satisfies 

11--611* +4~)llP-P611~2(n) I & $ k=l ‘k 
Em+‘(&) + ‘I(X)b-‘&i’u~(n,,) 7 

(5.3) 

with vk = min(Yk, rk) and where a(x) is bounded away from 0 and blows up like l/X for x --+ 0. 

REMARK 5.1. For several mixed hpfinite elements (see [34]), the local inf-sup constant ok may 
depend on the parameter rk, and the constant cr’ of Proposition 5.1 will have the same behavior 
with respect to (rk)k. Moreover, we emphasize the fact that it remains independent of the total 
number of subdomalns because Proposition 4.1 is still valid. In such situations, we can prove 
that the error of the velocity remains optimal; the approximation error inf,,seY6(n) ]]u- v6]]* has 
to be evaluated directly like in [15]. On the contrary, the accuracy on the pressure deteriorates 
by a factor (mini<k<k* C&)-l -- and is subject to some numerical locking. 

6. NUMERICAL EXPERIMENTS 
In thii section, we investigate the computational performance of the mortar element method 

for the Stokes boundary value problem for viscous incompressible fluid flow whose variational 
form is given by (2.6),(2.7). Actually, for the motion equation (2.6), we have considered the 
following form: 

u 
J 

VU.VV dx - 
I 

p(div v) dx = n n J n f .v dx, Vv E H;(Wb), 
where Y > 0 is the kinematic viscosity which is related to the Reynolds number of the flow. The 
right-hand side f is a given body force per unit mass. I’D is the Dirichlet part of the boundary. 
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(a) L-shaped domains. (b) Tensor product mesh for m = n = 2 

Figure 1. 

We are involved with the case where the viscosity u = 1. The problem is set on the L- 
shaped domain R (shown in Figure la) that is subdivided in two subdomains fir and Rs, by 
the interface OA). We impose the Dirichlet boundary condition on both velocity components 
along the edge OC and Neumann boundary condition on the remainder of the boundary. The 
nonconforming method is implemented as a mixed method. In our experiments, we restrict our 
meshes to be tensor product and uniform with fli divided into 2m2 rectangles (with the mesh 
always being symmetric about y = 0) and 02 divided into n2 rectangles, as in Figure lb. We 
consider the following exact solution: 

UT(x, Y) = (-e+(ycos(y) + sin(y)), e”ysin(y)), p(x, y) = 2e” sin(y). 

It can be easily checked that the corresponding f = 0. 

REMARK 6.1. It is well known that the domain in Figure 1 will result in a strong singularity 
which occurs at the reentrant corner 0. The exact solution that we test in this paper is analytical 
in the closure of Q and one cannot expect solutions to behave so nicely at such reentrant corners. 
Nevertheless, smooth solutions arise, for example, in smooth domains and it is hence reasonable 
to investigate the numerical performance of our method for such exact solutions, which is the 
main focus herein. 

We choose the velocity-pressure space combination to be lPP/PP-1. For both our experiments, 
we plot the percentage relative energy norm error for the velocity and the L2 norm error for the 
pressure, with respect to the total number of degrees of freedom. 

Results for h-version 

We take m grid points along both the x- and y-axis for Ri (top half) and n for 02, and 
use the mortar finite-element method with the combinations (m, n) E {(2,3), (4,6), . . . , (10,15)}. 
Note that for each of these combinations, the meshes are incompatible, and hence, are ideal for 
testing the performance of our method. The approximation order for the velocity is chosen to be 
quadratic (p = 2) and this implies a linear approximation of the pressure. In Figure 2, we clearly 
observe an optimal O(P) rate in both the velocity and the pressure variables. 

Results for pversion 

Here, we fix the mesh to be (m, n) = (2,3) and observed the convergence rates for increasing 
polynomial degree from p = 2, . . ,8. Figure 3 clearly illustrates the expected p-version conver- 
gence and it also indicates that the p-version easily surpasses the h-version in accuracy, due to 
higher convergence rates. 

Comments 

The numerical results presented in this paper clearly suggest that the mortar finite-element 
method is a robust and viable domain decomposition technique for the Stokes problem. Our 
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Figure 2. h-version convergence rates for mortar FEM (p = 2). 
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Figure 3. p-version convergence rates for mortar FEM ((m, n) = (2,3)). 

results are in correspondence with optimal theoretical results. We expect an exponential conver- 
gence for the hp-version in the presence of nonquasiuniform meshes. Also, one can obtain similar 
results for the mixed elasticity problem. The latter two aspects will be considered in a following 
paper. 
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7. CONCLUSION 

The results of this study are substantial improvements of those already proven in [14,15]. The 
statement that the BabuSka-Brezzi inf-sup condition for the h-, p-, and hpmixed mortar finite- 
element method does not depend on the total number of the subdomains is rigorously established 
(Propositions 4.1 and 5.1). This additional information is an important concern in view of using, 
in the mortar context, some iterative substructuring solvers (see [1,17,18]) that have proved to 
be efficient in the conforming case. 

Applying the mortar finite-element method to three dimensions gives rise to severe technical 
difficulties especially for tetrahedral meshes; we refer to [35] (see also [lo]). Recent work based on 
bubble-stabilization techniques allows a flexible and attractive extension of the h-mortar finite 
elements to three-dimensional second-order elliptic problems (see [36]). Approximating mixed 
elasticity and Stokes equations in three dimensions is proposed in [37] and the inf-sup condition 
is also proven to be optimal in that it does not depend on the parameters discretization nor in the 
total number of the subdomains. Generalizing these results to the (three-dimensional) hpmortar 
finite elements is still an open problem. 

The second interesting contribution of this work is specific to hp-mortar approximations. In- 
deed, the convergence rate of regular functions by hpmortared finite-element functions is proven 
to suffer only from Jrogp pollution (Proposition 3.1) instead of p314 proved in [9]. We are confi- 
dent that such an improvement will be useful in the future and facilitate attempts to widen the 
list of the applications of the hp-mortar methods. 

The combination of both results allows us to derive an error estimate (Theorem 5.3) that 
is m away from the optimal bound. We note that this estimate is dependent only upon the 
local features of the exact solution. 

APPENDIX A 
The aim of this appendix is to prove the “quasioptimal” estimation on the .projections (&)ke 

necessary for the evaluation of the best approximation error by the functions of X’(Q) given in 
Proposition 3.1. The proof requires some preliminary results for some polynomial projections. 
Throughout this appendix and the next one, the symbol Pi(-1,l) stands for the subset of 
polynomials which vanish at fl and the subspace PF(-1, 1) (respectively, P,“( -1,l)) contains all 
the polynomials of Pp( -1,1) that vanish at -1 (respectively, 1) so that P:(-1,l) nP:(-1,l) = 
ppo(-1,l). 

A.l. Analysis of Two L2-Polynomial Projections on Pf(-1,l) 

Denote by rr, the orthogonal projection on PF(-1, 1) with respect to the L2(-1, 1)-inner prod- 
uct, vx E i?(-1, l), 7r,x E PF(-1, l), 

I 

1 

(x - ~,x)& dS = 0, V$P E P,ok-1, l), 
-1 

and let AT stand for the orthogonal projection P,“(-1,l) in H$(-1,l); it may be specified as 
follows: 

J 

1 

(x - nIT,*x) $7 4 = 0, V$r E R-2(-1,1). 
-1 

Recall the optimal approximation results of [31], ‘da E [O,l], Vv 2 0, Vx E H1+V(-l,l) n 
f&l, 11, 

IIX - ~TxIIL~(-l,l) 5 & IlXIIH’++l,l)r (A.l.l) 

bt - “;*Xii~g2(-1,1) + & Ix - “;XiH+l,l) 2 & hllH1+-(-l,l,. 
(A.1.2) 
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So far, the operator K,. is known to have suboptimal approximation behavior with respect 
to H$/“(-l,l)-seminorm; i.e., for any v 2: 0 we have, Vx E H’+V(-l, 1) rl HA(-1, l), 

lx - GXI CC- H;c’(-1,l) - .;;;tv ~k~~H’+Y(-l,l)~ (A.1.3) 

This estimate is r1j4 away from optimality; we refer to [38] for the details. The main new 
point here is that actually the loss is not worse than e and the approximation rate becomes 
quasioptimal. The proof relies on the bound of IIA?&~[H~/~(-~,J) < Cm, recently provided 
in [39]. 

LEMMA A.l.l. For any ZJ 10, the following holds: Vx E H1+V(-l, 1) n H,‘(-1, l), 

lx - %X1 H,‘i*(-1,l) ’ crl,l+u E ~k~lH1+~(-1,1)~ (A.1.4) 

PROOF. It is immediate that 

s 

1 

-1 (x,-x - 6x) 6 (I- r”) 4 = 0, VlcIT E Pr-4(-L 1). 

Because of the orthogonality of (L’,), with respect to the measure (1 - t2) 4, it turns out that 
(.lr,x - ?rcx) must belong to the span of {Lk,,, L~,L~-lrL~-2}. Using the fact that (n,.x - 
~:x)(*l) = 0 yields 

TTX - fl:x = %XT + &-lXr-1, 

where 

XT = (r + lF(r + 2) L’+’ -& 
Li-1 E PF(-1,l). 

Multiplying (A.1.5) by (1 - t2)(Lkm1, Ltp2) and integrating gives 

(A.1.5) 

(2r - l)LL., 
( a?l) = -; J_: (x -4x) ((I&. _ 3)Lk-, > 

Cl- E2) de. 

Green’s formula, together with Cauchy-Schwartz inequality and (A.1.2), shows that 

m=(brl, bT-li) 5 & IkIIH’+Y(-l,l). 

The triangular inequality applied to (A.l.5) yields 

IIX - GXII &o/*(-1,1) 5 IIX - $x11H;/*(-~J) 

+ &XII ( H’+“(-1,l) 1k4H;o/*(-l,l) + 1b4H,$*(-l,~)) 

Using the bound (B.l) of Appendix B completes the proof. I 
Let t be a bounded nonempty interval of length ht, and denote $ the L2-orthogonal projection 

on ‘P:(t). Then we have the following corollary. 

COROLLARY A.1.2. For any v 2 0, the following holds: Vx E H’+“(t) n Hi(t), 

(A.1.6) 

with CY = inf(u, r). The constant C depends neither on r nor on ht. 
The second operator we are interested in is denoted by ii,; it is the projection on PF(-1,l) 

defined as follows, Vx E L2(-1, 1): 

J 
1 

-1 (x 
- %x) 6 4 = 0, V$P E PrR_1(-171). (A.1.7) 

Similar to ?r,., although it looks like an L2-projection, the operator ii, has a nice approximation 
estimate with respect to Hi!‘-norm. 
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LEMMA A.1.3. For any v L 0, the following holds: t/x E H’+“(-1,l) n Hi(-1, l), 

IIX - %XIlLZ(-l,l) I & lIXIIH’++l,l)r 

Ix -%xl H$‘(-1,l) ’ ’ +/2+v Jrogr hIIH’+“(-1,l). 

PROOF. Proceeding as in the beginning of the previous proof, we have 

g,x - .Ir,*x = P,xr + PT-1X?-1. 

On one hand, the computation of the real /3,.-i yields 

&-I = -; (2r - 3) I1 (x - 6x1 G-2 (1 - 6”) 4. 
-1 

(A.1.8) 

On the other hand, multiplying (A.1.8) by (1 + <) gives 

p 
7 

= _ CT + 2m - 1) 
(r-2)(2r+1)Dr-1. 

Then, we complete the proof as in Lemma A.1.1. I 
REMARK A.l.l. The projection operator defined by taking ‘P,!-i(-1,l) in (A.1.7) instead of 
PF-i(-l, 1) also satisfies the estimates of Lemma A.1.3. 

For any t, a bounded nonempty interval of length ht, iit is the projection operator on P:(t) 
obtained from ii,. by a convenient translation and homotetic transformations. Then we have the 
following corollary. 

COROLLARY A.1.4. For any v 2 0, it holds: t/x E Hi+“(t) n Hi(t), 

with (Y = inf(v, r). The constant C depends neither on r nor on ht. 

A.2. The hp-Mortar Finite-Element Projection 

In order to simplify the presentation, we choose to work on the reference edge A = (-i, i). 
The extension to an arbitrary edge I’ke is made in an obvious way using a convenient translation 
and scaling. Henceforth, the mesh t6 of A is associated with the subdivision (Ji)o<i<i. with -- 
<s = -1 and [ii* = 1 and (ti =]&,&+i[)~<~~+- ‘t i 1 s e ements. 1 It is assumed to satisfy the (M) 
condition (3.1). The mortar projection, simply denoted R’ (6 = (h, T) are the discretization 
parameters), is defined by (3.5) using spaces W6 (A) and M&(A) constructed in the same way 
as W6(I’ke) and M6(I’ke). A first estimate on x6 is given by Seshaiyer and Suri in [9], which is 
“suboptimal” (the bound is polluted by the factor r3i4), V v > 0, V x E Hi+“(A), 

(A.2.1) 

with cr = min(u,~). The reason why they observed such a degradation of the accuracy of rr6 is 
that they first proved the following stability: ‘v’x E I-Iii’(A), 

IVxll H,‘:‘(A) - < Cr3’411~IIH;~~~A~~ (A.2.2) 

and then they used it to derive (A.2.1). The continuity constant cannot be improved as ob- 
served in [9]; nevertheless, the estimate (A.2.1) is not optimal, and the approach that consists 
of evaluating (A.2.2) via (A.2.1) is not the correct one. The aim of this section is to reduce the 
extra-factor r314 to fi and then to prove the “quasioptimal” result, by producing a direct 
proof of the approximation error. 
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THEOREM A.2.1. For any Y 2 0, the following estimate holds: Vx E H1/2+V(A), 

with r] = min( v, r) . 

For the proof, we adopt the methodology introduced in [29] for the h-finite elements and used 
in [9] for the hp-version. We need to split the operator I? into a sum of two operators. Their 
definitions require the following spaces (see [9]): 

W;(A) = {x6 E b@(A), x6(&) = 0, Vi (0 < i I i*)} , 

M;(A) = {@ E it@(A), @(&) = 0, Vi(l < i L: i* - I)}, 

J xs&iC=O, V&i@(A) , 
A > 

M;(A) = { ti6 E M’(A), J x6&% = o, vx6 E W;(A) 
A 1 

We note that the functions @ E @(A) do not necessarily vanish at {Q,&} = {-1,l). The 
operators x;’ and ?ri are defined as in (3.5) using, respectively, the couples of spaces (W:(A), 
M!(A)) and (I@(A), I@(A)) instead of (W6(A), Mb(A)). Due to the orthogonality of (W!(A), 
M;(A)) and (W,(A), M;(A)) with respect to the L2-inner product, we have r6 = 7rf + ~2”. The 
next sections are dedicated to the analysis of 7rf and ~2”. 

A.2.1. H$‘-approximation result for 7rf 

The operator X! has a good localization property; the restriction of (7rfq~) to each element ti 
(0 5 i 5 i* - 1) depends only on (piti). They are of two types: those acting within internal 
elements ti (1 5 i I i* - 2) are actually 7r$, and those defined on the extremal elements are ii:, 
i = 0 or (i* - 1). Putting together the local error approximation of the Corollaries A.l.2 and A.1.4 
provides a global estimate for rt. 

LEMMA A.2.2. For any u 1 0, the following holds: Vx E H ‘+“(A) such that xlti E Hi(&), Vi 
(1 5 i 5 i* - l),, 

t/x - K~&~o/2(A) 5 c g &iihkllH1+v(A,~ 

with o = inf(v, r). The constant C depends neither on r nor on h. 
PROOF. Letting x E Hi+“(A) such that ~(6) = 0, Vi (1 5 i 5 i* - l), we have 

A.2.2. H$2-approximation results for ~2” 

The space W!(A) is spanned by (i* - 1) nodal functions (~i)~<i<(i*-l) (see [9,29]). Define the -- 
polynomial qr E P,.(-1,1) such that cp,(-1) = 0, cp,(l) = 1, and 

J 
1 

cprh dt = 0, V& E q?(-1,l). 
-1 
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Then (pp = T$ where 
b+1@) L(E) 

q4t) = (T + l)(r + 2) + T(T + 1) 
and & E ‘P,(-1,1) such that &(-1) = 0, q,.(l) = 1, and 

Then 
J 1 

&A 4 = 0, vq!Jr E P,“_,(-1,l). 
-1 

The basis of W!(A) is set as follows: (2 < i 5 i* - 2), 

x40 = 

otherwise, 

xi*-l(E) = 

otherwise. 

Moreover, the space M:(A) coincides with SP{$i, . . . ,I,!Q=-1). The basis involves l()i = xi (2 < 
isi*-2)and 

hi*-1 

h(I) = 
-xl(S), on to, +ia-l(E) = ti* _ E Xi*-l(E), On he-l7 

otherwise, xi*-l(t), otherwise. 

Let x E Hi(A) and nix = C:l<,;‘oiXi; introducing the vector x6 = ((~1,. . . ,oi=-1) and x = 
((xt!h)L2(A), . . . , (X,@i*-l)Lz(A))r we Can write 

(I + K>$ = D-lx, 

whereD=Diag(Di,...,Di.-i)sothat 
hi + hi-1 

Di = (Xi, +i)La(-l,l) = T(T + 2) 7 25i<i’-2, 

h 
DI = (xI,~~L+I,I) = & + -7 r(r + 2) 

hi*-2 
Die-1 = (xi*-l,~i*-l)Lz(-l,l) = & + -I T(T + 2) 

and K is a tridiagonal matrix with zero diagonal elements, the entries of which are computed by 
Seshaiyer and Suri in [9]. It is proven, therein, that 

114&(A) - < C IID-112~lIE, I lb III 4X Lo ” llD-3’2xllE’ 
where I]. ]] E is the Euclidian norm of W (i’-l) . The L2-stability is valid for any kind of meshes while, 
so far, the HI-stability is available only for (M)-meshes satisfying (3.1). Prom these inequalities, 
we deduce the following results. 
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LEMMA A.2.3. Let x E H,‘(A) be such that x(&i) = 0, Vi (0 5 i 5 i*). We have 

ll4XllL2(A) 5 c & kh’(A)~ (A.2.4) 

l&IHl(A) 5 c~“2kh1(A). (A.2.5) 

PROOF. The point is to estimate in a judicious way the terms llD-1/2x11~- and llD-3/2xllE. For 
anyi(l<i<i*-l),wehave 

First, we compute the integral on ti (1 5 i 5 i* - 2), using an integration by parts formula 

Cauchy-Schwartz inequality yields 

Similarly, we have 

There remains to look at the special cases of the extremal elements to and &=-I. First, observe 
that 

Following the same lines as above, we show that 

This gives 

1 (rl’%);l I c (hi + ;-I)I,2 
( 
$g IIX~IlL2(ti~l) + $ IIXYLW) 

<CL ,.3/2 IIX’IILa(ti-l”ti) ’ 

Taking the sum of squares over i yields (A.2.4). On the other side, we have 

5 cd2 IlX’IIL2(ti~l”ti) . 

A sum of the squares over i provides (A.2.5) and completes the proof. I 
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LEMMA A.2.4. Let x E Hi(A) be such that x(Ei) = 0, Vi (0 5 i 5 i*). Then we have 

IldXll 
h1/2 

H,‘,/‘(A) 5 CTljZkbI’(A). (A.2.6) 

PROOF. First of all, recall the compactness result of [20, Theorem 1.2.121: for any real number 
E > 0, the following inequality holds: V x E HJ( -1, l), 

IlXll 
c 

H,‘,/‘(-l,l, - < 4XI.w(-1,l) + 5 IlxllL~c-1,1,. 

The constant C > 0 is independent of E. 
Let x E Hi(A) be given such that x(&) = 0, Vi (0 5 i 5 i*). Choosing e = h1i2/r in the 

previous inequality gives 

By (A.2.4) and (A.2.5), we obtain (A.2.6). I 

8.2.3. Proof of Theorem A.2.1 

First, let us consider the projection operator studied in [12] and defined as follows: V x E I-I1 (A), 
ir’x E W&(A) is such that 

@X(Ei) = x(b), vi (0 5 i 5 i*), 

J t, (x - ir6x) @ 4 = 0, V$” E P&!(t). 

We have the following estimate: for v 2 0: V x E H’+“(A), 

IIX - +sxll H’(A) 5 c 5 IkbI1+“(A)~ 

where Q = min(r, v). 
Then let x E H l+“(A) be given. We write 

IIX - ?r6dY;~“(A) = 11(x - “x) - T6 (x - @x) Ilff;,/2(A) 

5 11 (x - ‘%) - n; (x - @x) (/j9;o/2(A) + lld (x - ‘%) I&&“(A) ’ 

Noticing that (X - ii6x)(&) = 0, Vi (0 5 i 2 i*), we can apply Lemmas A.2.2 and A.2.3, and we 
find 

IIX - T6&;o/2(A) 5 ’ g m [Ix - ii6xll H’(A) + $ IIx - ‘6&~(A)) 

< c g &ii@ h~IH’+“(A)~ - I 

APPENDIX B 

The purpose of this appendix is to bound the H,$“(-1, 1)-norm of the function x,. introduced 
in the proof of Lemma A.l.l. 
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LEMMA B.l. We have 

PROOF. Using the identity 

we deduce that 

and therefore, 

IIx~IIHw(-~,~) I 0--l ( IILIIH~~~(-I,I) + r -2 II~:-lII~“~(-l,l)) 

The inverse inequality (see [31]), combined with the fact that IIL,.llH~,a(-l,l, L CJm 
(see [39]), yields the partial result 

Am 
IIXrllH’/~(-l,l) i c-y--. 

To bound the remainder term of IIx~II~;o/~~-~,~), we write 

The first term is bounded in by Clog(r) in [39]. In order to work out the second, we resort to a 
Gauss-Lobatto numerical integration with T points and obtain 

1 

s( (r ?I), L:-l - l > 
2 & 

r-2 

-1 - = 2 1 _ ,;r-l) 2 fJY-“~ l-t2 
( > j 

where ($‘-“) 0c3cT 1 are the roots of (1 - <2)Lk-1 and (py-‘) _ ._ - )O<j<T-l the associated weights. 
Following the same line of argument as [39], this integral is bounded by Clog(r). I 
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