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1. Introduction

In this paper, we present uniform convergence results for the mortar finite
element method (which is an example of a non-conforming method), for h, p and hp
discretizations over general meshes. Our numerical and theoretical results show that
the mortar finite element method is a good candidate for hp implementation and
also that the optimal rates afforded by the conforming h, p and hp discretizations
are preserved when this non-conforming method is used, even over highly non-
quasiuniform meshes.

Design over complex domains often requires the concatenation of separately
constructed meshes over subdomains. In such cases it is difficult to coordinate
the submeshes so that they conform over interfaces. Therefore, non-conforming
elements such as the mortar finite element method [2, 3, 4] are used to “glue”
these submeshes together. Such techniques are also useful in applications where the
discretization needs to be selectively increased in localized regions (such as those
around corners or other features) which contribute most to the pollution error in
any problem. Moreover, different variational problems in different subdomains can
also be combined using non-conforming methods.

When p and hp methods are being used, the interface incompatibility may
be present not only in the meshes but also in the degrees chosen on the elements
from the two sides. Hence the concatenating method used must be formulated to
accomodate various degrees, and also be stable and optimal both in terms of mesh
refinement (h version) and degree enhancement (p version). Moreover, this stability
and optimality should be preserved when highly non-quasiuniform meshes are used
around corners (such as the geometrical ones in the hp version).

We present theoretical convergence results for the mortar finite element method
from [7],[8] and extend these in two ways in this paper. First, we show that the
stability estimates established for the mortar projection operator (Theorem 2 in
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[8]) are optimal. Second, we present h, p and hp computations for a Neumann
problem, which fills a gap in numerical validation as explained in Section 4.

2. The Mortar Finite Element Method

We begin by defining the mortar finite element method for the following model
problem.

−∆u = f, u = 0 on ∂ΩD,
∂u

∂n
= g on ∂ΩN .(1)

where Ω ⊂ IR2 is a bounded polygonal domain with boundary ∂Ω = ∂ΩD ∪
∂ΩN (∂ΩD ∩ ∂ΩN = ∅), and for simplicity it is assumed ∂ΩD 6= ∅. Defining
H1
D(Ω) = {u ∈ H1(Ω)|u = 0 on ∂ΩD} (we use Standard Sobolev space notation),

we get the variational form of (1) : Find u ∈ H1
D(Ω) satisfying, for all v ∈ H1

D(Ω),

a(u, v) def=
∫

Ω

∇u.∇v dx =
∫

Ω

fv dx+
∫
∂ΩN

gv ds
def= F (v) .(2)

This problem has a unique solution.
We now assume Ω is partitioned into non-overlapping polygonal subdomains

{Ωi}Ki=1 assumed to be geometrically conforming for simplicity (though our results
also hold for the geometrically non-conforming (see [2]) case). The interface set
Γ is defined to be the union of the interfaces Γij = Γji, i.e. Γ = ∪i,jΓij where
Γij = ∂Ωi ∪ ∂Ωj . Γ can then be decomposed into a set of disjoint straight line
pieces γi, i = 1, 2, . . . , L. We denote Z = {γ1, . . . , γL}.

Each Ωi is assumed to be further subdivided into triangles and parallelograms
by geometrically conforming, shape regular [5] families of meshes {T ih}. The trian-
gulations over different Ωi are assumed independent of each other, with no compat-
ibility enforced across interfaces. The meshes do not have to be quasiuniform and
can be quite general, with only a mild restriction, Condition(M), imposed below.

For K ⊂ IRn, let Pk(K) (Qk(K)) denote the set of polynomials of total degree
(degree in each variable) ≤ k on K. We assume we are given families of piecewise
polynomial spaces {V ih,k} on the Ωi,

V ih,k = {u ∈ H1(Ωi) | u|K ∈ Sk(K) for K ∈ T ih , u = 0 on ∂Ωi ∩ ∂ΩD} .
Here Sk(K) is Pk(K) for K a triangle, and Qk(K) for K a parallelogram. Note
that V ih,k are conforming on Ωi, i.e. they contain continuous functions that vanish
on ∂ΩD.

We define the space Ṽh,k by,

Ṽh,k = {u ∈ L2(Ω) | u|Ωi ∈ V ih,k ∀i}(3)

and a discrete norm over Ṽh,k ∪H1(Ω) by,

||u||21,d =
K∑
i=1

||u||2H1(Ωi)
.(4)

The condition on the mesh, which will be satisfied by almost any kind of mesh
used in the h, p or hp version, is given below. Essentially, it says the refinement
cannot be stronger than geometric.

Condition(M) There exist constants α,C0, ρ, independent of the mesh param-
eter h and degree k, such that for any trace mesh on γ ∈ Z, given by x0 <
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x1 < . . . < xN+1, with hj = xj+1 − xj, we have
hi
hj
≤ C0 α

|i−j| where α satis-

fies 1 ≤ α < min{(k + 1)2, ρ}.

To define the “mortaring”, let γ ∈ Z be such that γ ⊂ Γij . Since the meshes
T ih are not assumed to conform across interfaces, two separate trace meshes can
be defined on γ, one from Ωi and the other from Ωj . We assume that one of the
indices i, j, say i, has been designated to be the mortar index associated with γ,
i = M(γ). The other is then the non-mortar index, j = NM(γ). We then denote
the trace meshes on γ by T hM(γ) and T hNM(γ), with the corresponding trace spaces
being VM (γ) and V NM (γ), where e.g.

VM (γ) = VMh,k(γ) = {u|γ | u ∈ V ih,k} .

Given u ∈ Ṽh,k, we denote the mortar and non-mortar traces of u on γ by uMγ and
uNMγ respectively. We now restrict the space Ṽh,k by introducing constraints on the
differences uMγ − uNMγ . This “mortaring” is accomplished via Lagrange Multiplier
spaces S(γ) defined on the non-mortar trace meshes T hNM(γ). Let the subintervals
of this mesh on γ be given by Ii, 0 ≤ i ≤ N . Then we set S(γ) = SNMh,k (γ) defined
as,

S(γ) = {χ ∈ C(γ) | χ|Ii ∈ Pk(Ii), i = 1, . . . , N − 1 , χ|I0 ∈ Pk−1(I0),

χ|IN ∈ Pk−1(IN )}
i.e. S(γ) consists of piecewise continuous polynomials of degree ≤ k on the mesh
T hNM(γ) which are one degree less on the first and last subinterval.

We now define Vh,k ⊂ Ṽh,k by,

Vh,k = {u ∈ Ṽh,k|
∫
γ

(uMγ − uNMγ )χds = 0 ∀χ ∈ SNMh,k (γ), ∀ γ ∈ Z} .(5)

Then our discretization to (2) is defined by: Find uh,k ∈ Vh,k satisfying, for all
v ∈ Vh,k,

ah,k(uh,k, v) def=
K∑
i=1

∫
Ωi

∇uh,k .∇v dx = F (v) .(6)

Theorem 1. [3] Problem (6) has a unique solution.

3. Stability and Convergence Estimates

Let V NM0 (γ) denote functions in V NM (γ) vanishing at the end points of γ. The
stability and convergence of the approximate problem depends on the properties
of the projection operator Πγ : L2(γ) → V NM0 (γ) defined as follows: For u ∈
L2(γ), γ ∈ Z, Πγu = Πh,k

γ u is a function in V NM0 (γ) that satisfies,∫
γ

(Πh,k
γ u) χds =

∫
γ

u χ ds ∀χ ∈ SNMh,k (γ) .(7)

Condition(M) imposed in the previous section is sufficient, as shown in [7, 8], to
ensure the following stability result for the projections Πγ .
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Figure 1. (a) Maximum eigenvalue for L2 (b) Maximum eigen-
value for H1

Theorem 2. Let {Vh,k} be such that Condition(M) holds. Let {Πh,k
γ , γ ∈ Z} be

defined by (7). Then there exists a constant C, independent of h, k (but depending
on α,C0, ρ) such that,

||Πh,k
γ u||0,γ ≤ Ck

1
2 ||u||0,γ ∀u ∈ L2(γ)(8)

||(Πh,k
γ u)′||0,γ ≤ Ck||u′||0,γ ∀u ∈ H1

0 (γ)(9)

A question unanswered in [8] was whether (8)–(9) are optimal. Figure 1 shows
that the powers of k in (8)–(9) cannot be improved. This is done by approximating
the norms of the operator ||Πh,k

γ ||L(L2(γ),L2(γ)) and ||Πh,k
γ ||L(H1(γ),H1(γ)) (with h

fixed), using an eigenvalue analysis. (For details we refer to the thesis [7].) It is
observed that these norms grow as O(k

1
2 ) and O(k) respectively, as predicted by

Theorem 2.
Using Theorem 2 and an extension result for hp meshes [8], we can prove our

main theorem, by the argument used in [3], Theorem 2 (see [7, 8] for details). In
the theorem below, {Nj} denotes the set of all end points of the segments γ ∈ Z.

Theorem 3. Let {Vh,k} be such that Condition(M) holds. Then for any ε > 0,
there exists a constant C = C(ε), independent of u, h and k such that,

||u − uh,k||1,d ≤ C
∑
γ∈Z

inf
ψ∈Sh,k(γ)

||∂u
∂n
− ψ||�

H
1
2 (γ)

�′ +(10)

C inf
v∈Ṽh,k

v(Nj)=u(Nj)

{∑
i

||u− v||1,Ωi+

k
3
4 +ε

∑
γ∈Z

(
||u− vMγ || 12 +ε,γ + ||u− vNMγ || 1

2 +ε,γ

)
Moreover, for h or k fixed, or for quasiuniform meshes, we may take ε = 0 if we
replace ||.|| 1

2 +ε,γ by ||.||
H

1
2
00

(γ).

The following estimate for quasiuniform meshes follows readily from Theorem 3:
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Figure 2. (a) L-shaped domain (b) Tensor product mesh for m =
n = 2

Theorem 4. Let the solution u of (2) satisfy u ∈ H l(Ω), l > 3
2 (l > 7

4 if k
varies). For the hp version with quasiuniform meshes {T ih} on each Ωi,

||u− uh,k||1,d ≤ Chµ−1k−(l−1)+ 3
4 ||u||l,Ω(11)

where µ = min{l, k + 1} and C is a constant independent of h, k and u.

Theorem 3 also tells us that, using highly non-quasiuniform radical meshes
in the neighbourhood of singularities (see Section 4 of [1]), we can now recover
full O(hk) convergence even when the mortar element method is used. Moreover,
exponential convergence that is realized when the (conforming) hp version is used
over geometrical meshes will be preserved when the non-conforming mortar finite
element is used. We illustrate these results computationally in the next section.

4. Numerical Results

We consider problem (1) on the L-shaped domain shown in Figure 2, which
is partitioned into two rectangular subdomains, Ω1 and Ω2, by the interface AO.
In [8], we only considered the case where ∂ΩD = ∂Ω. This, however, results in
the more restrictive mortar method originally proposed in [3], where continuity is
enforced at vertices of Ωi. To implement the method proposed in [2] and analyzed
here, where the vertex continuity enforcement is removed, we must take Neumann
conditions at the ends of AO. We therefore consider here the Neumann case where
∂ΩN = ∂Ω, with uniqueness maintained by imposing the condition u = 0 at the
single point C. Our exact solution is given by,

u(r, θ) = r
2
3 cos

(
2θ
3

)
− 1.

where (r, θ) are polar coordinates with origin at O. We use the mixed method to
implement the mortar condition. For our computations, we consider tensor product
meshes where Ω2 is divided into n2 rectangles and Ω1 is divided into 2m2 rectangles
(see Figure 2).

It is well-known that this domain will result in a strong r
2
3 singularity which

occurs at the corner O in Figure 2, which limits the convergence to O(N−
1
3 ) when

the quasiuniform h version is used. Figure 3 shows that this rate is preserved when
the mortar finite element is used (graph (1)) with degree k = 2 elements. When
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Figure 3. The relative error in the energy norm in dependence
on h for radical meshes (k = 2)
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Figure 4. The relative error in the energy norm in dependence
on N for geometric meshes (σ1 = 0.17, σ2 = 0.13)

suitably refined radical meshes are used, then O(N−1) convergence is recovered
both for the conforming (graph(2)) and mortar (graph(3)) methods.

For the p and hp mortar FEM on geometric meshes, we take m = n and
consider the geometric ratio σ (i.e. the ratio of the sides of successive elements, see
[6]) to vary in each domain Ωi. The optimal value is 0.15 (see [6]), but we take
σ1 = 0.17 and σ2 = 0.13 to make the method non-conforming. We observe in Figure
4, the typical p convergence for increasing degree k for various n. Note that for our
problem, at least, we do not see the loss of O(k

3
4 ) in the asymptotic rate due to the

projection Πγ not being completely stable (as predicted by Theorem 4 and Figure
1). See Figure 5(a) where we have plotted the case σ1 = 0.17, σ2 = 0.13 for n = 4
together with the conforming cases σ1 = σ2 = 0.13 and 0.17. The results indicate
that the p version mortar FEM behaves almost identically to the conforming FEM.

Finally, in Figure 5(b), we plot log(relative error) vs N
1
4 , which gives a straight

line, showing the exponential rate of convergence. We also plot log(relative error)
vs N

1
3 , which is the theoretical convergence rate for the optimal geometric mesh

(see [1],[6]). Since we consider a tensor product mesh here, which contains extra
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Figure 5. (a) Performance of the mortar FEM for n=4 (b) Ex-
ponential Convergence for the hp mortar FEM

degrees of freedom, we can only obtain an exponential convergence rate of Ce−γN
1
4

theoretically.
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