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Abstract

In this paper, we describe a computational methodology to couple physical processes defined over independent subdo-
mains, that are partitions of a global domain in three-dimensions. The methodology presented helps to compute the
numerical solution on the global domain by appropriately piecing the local solutions from each subdomain. We discuss
the mixed method formulation for the technique applied to a model problem and derive an error estimate for the finite
element solution. We demonstrate through numerical experiments that the method is robust and reliable in higher
dimensions.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Over the last few decades, there has been a considerable amount of research into developing new techniques
to solve coupled physical processes over increasingly complex domains. In practice, such complex global
domains are often decomposed into several non-overlapping subdomains and the physical processes are then
studied independently over each subdomain. The local solutions, hence, obtained over each subdomain are
then assembled to produce a global solution to the multi-physics over the global domain.

Fig. 1 illustrates such a modeling complexity on a global domain X. To simplify the solution process, the
global domain is partitioned into two subdomains X1 and X2 that may be modeled by different analysts. More-
over, to obtain faster solutions the multi-physics problem is often solved locally over each subdomain, simul-
taneously. During this process, each analyst may employ different finite element discretization procedures and
hence the meshes may be differently constructed over each subdomain. This causes the meshes of the subdo-
mains to not conform at the common interface.
0307-904X/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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Fig. 2. Independently modeled subdomains X1 and X2 with non-matching grids on the interface ABCD.

Fig. 1. Global Domain X = X1[X2.
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Fig. 2 illustrates this, where the subdomains X1 and X2 are modeled using different submeshes that do not
conform at the common interface ABCD. In order, to assemble the locally constructed solutions to obtain a
global solution in X, one must employ an efficient method to glue the local solutions together at the interface
ABCD. Such a coupling technique can be extremely useful in engineering applications when pre-meshed com-
ponents need to be incorporated into an existing model.

This interdomain coupling can be enforced in a variety of ways. Let ui be the value of the trace of the solu-
tion on the interface ABCD from subdomain Xi. One approach is to introduce a Lagrange multiplier on the
interface ABCD to enforce the inter-domain continuity
u1 ¼ u2 over ABCD ð1:1Þ

An example of such a technique is the mortar finite element method ([6,15,2,5,3] and references therein). Here
precise choices for the two fields (the interior solution variables and the interface Lagrange multiplier) are
made to make the system stable [14]. Other choices of two-field Lagrange multiplier methods can be found
in [18,16]. Note that the description of the two-field methods are in two dimensions and the extension to three
dimensions (for tensor product spaces) can be found in [4,16,14].

Alternatively, one may also introduce two Lagrange multipliers (corresponding to the interior solution var-
iable in each subdomain) on ABCD and an interface variable z (corresponding to the trace of the exact solu-
tion) on ABCD and enforce
ui � z ¼ 0 over ABCD ð1:2Þ

for i = 1, 2. Once again, as in the two-field method to ensure the method is stable, one must make precise
choices for the three fields: the first field being the interior solution variable, the second field being the interface
Lagrange Multiplier and the third field being an artificial interface displacement. Eq. (1.2) is enforced as a
weak continuity constraint to help glue the local interior solutions. This method allows more flexibility in
the choice of the approximation spaces and therefore, has obvious advantages over other coupling methods.
One can refer to [17] for an implementation of this technique in two dimensions. Variants of this technique in
two dimensions can also be found in [1,7–9]. Let us also mention the existence of other domain decomposition
algorithms and some parallel implementations in the literature (see for e.g. [12,13,19]).
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This brings us to the motivation behind this paper. Our goal is to consider the suitability of three-field
methods in three dimensions for hp implementation, to couple solutions over subdomains with non-matching
grids. In this paper, we present the mixed method formulation and implementation of the three-field method
for a model problem in three-dimensions. We test the accuracy and reliability of the technique by performing
the h-version (where polynomials of fixed degree p are used and the mesh is refined to increase accuracy) and
the p-version (where the method uses a fixed mesh but increases the polynomial degree p to increase accuracy).
Finally, we test the three-field method developed for sub-domains with non-matching grids against those with
matching grids. Note that the latter simply yields a conforming standard finite element formulation for which
the results are well known.

The authors gratefully acknowledge the contribution of the Texas Tech High Performance Computing Cen-
ter (HPCC). Without the generous help of the HPCC staff and the availability of HPCC assets the results in
this paper would have been severely limited.

2. Model problem and discretization

We consider the following second-order elliptic problem which models a steady-state convection diffusion
problem given by
�divðaruÞ þ bu ¼ f on X

u ¼ 0 on oXD

a
ou
on
¼ g on oXN

ð2:3Þ
Here a is a uniformly positive function and bP0 in the bounded domain X � R3 with boundary
oX ¼ oXD [ oXN ðoXD \ oXN ¼ ;; oXD 6¼ ;Þ. The form (2.3) is equivalent to the following variational form.
Find u 2 E(X) satisfying, for all v 2 E(X),
aðu; vÞ ¼def
Z

X
aru � rvþ buvdx ¼

Z
X

fv dxþ
Z

oXN

gvds ¼def
F ðvÞ ð2:4Þ
Here, the energy space E(X) is seen to be, EðXÞ ¼ fu 2 H 1ðXÞju ¼ 0 on oXDg ¼def H 1
DðXÞ, where we are using

Hk(X) to denote the space of functions with k generalized derivatives on X. We set L2(X) = H0(X) and denote
by both k Æ kk,A and k � kHkðAÞ the norm of Hk(A). Note that the definition of these spaces can be extended to
non-integer values of k by interpolation.

Let us assume X is the union of S non-overlapping polygonal subdomains fXigS
i¼1 such that oXi \ oXj (i < j)

is either empty, a vertex, or an edge or an entire face of Xi and Xj. The above conformity condition can be
relaxed, since by using the arguments of [2], our results (with some minor changes) extend to non-conforming
decompositions as well. Let us for simplicity, assume that the union of all intersections oXi \ oXj, i < j, is the
face Cij. We set the interface set C to be the union of all Cij. We further subdivide Xi into a sequence of geo-
metrically conforming, shape regular [10] triangulations, fTi

hg. It should be noted that the triangulations over
different Xi are independent of each other, with no compatibility enforced across interfaces. Since the meshes
fTi

hg are not assumed to conform across interfaces, two separate trace meshes can be defined on Cij, one from
Xi and the other form Xj.

2.1. Mixed formulation

Our problem of finding the continuous solution u satisfying (2.3) becomes solving (2.5) for ui, the interior
solution variable in each Xi
�divðaruiÞ þ bui ¼ fi on Xi

ui ¼ 0 on oXD \ oXi

a
oui

oni
¼ gi on oXN \ oXi

ð2:5Þ
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Multiplying the partial differential equation in (2.5) by a test function vi 2 H 1
DðXiÞ, integrating by parts and

applying the boundary conditions gives
aSðu; vÞ þ bSðv; kÞ ¼ F ðvÞ ð2:6Þ
where aS(u,v) is the bilinear form defined by
aSðu; vÞ ¼
XS

i¼1

Z
Xi

arui.rvi þ buivi dx ð2:7Þ
and bS(v,k) is the bilinear form defined by
bSðv; kÞ ¼
X
Cij�C

Z
Cij

�vik
i þ �vjk

j ds ð2:8Þ
Here �vi and �vj denote the traces of the function vi and vj on Cij, respectively. The fluxes at the interface are
ki ¼ �a oui

oni 2 H�
1
2ðCijÞ and kj ¼ �a ouj

onj 2 H�
1
2ðCijÞ, with ni and nj being the corresponding unit outward normals

from Xi and Xj, respectively at the interface Cij. Note that k 2 H�
1
2ðCijÞ ¼ H�

1
2ðCijÞ � H�

1
2ðCijÞ.

It must also be noted that (2.6) must be solved along with the continuity condition enforced on �ui, the trace
of the solution ui on Cij given by
Z

Cij

�uiv
i ds ¼

Z
Cij

tvi ds ð2:9Þ
where vi is any function in H�
1
2ðCijÞ and t is a new unknown we introduce, called the interface displacement

which belongs to H
1
2ðCijÞ. (Note that H�

1
2ðCijÞ is the topological dual space of H

1
2ðCijÞ.) Using (2.8) and

(2.9), we have
bSðu; vÞ ¼
X
Cij�C

Z
Cij

ðvi þ vjÞt ds ð2:10Þ
Also, since the solution is smooth in the interior in X, we have ki + kj = 0, which can be rewritten using a
bilinear form cS(k,l) as
cSðk; lÞ :¼ �
X
Cij�C

Z
Cij

ðki þ kjÞlds ¼ 0 8l 2
Y

Cij�C

H
1
2ðCijÞ ð2:11Þ
The problem (2.3) can now be stated in mixed form: Find ðu; k; tÞ 2
QS

i¼1H 1
DðXiÞ �

Q
Cij�CH�

1
2ðCijÞ�Q

Cij�CH
1
2ðCijÞ such that
aSðu; vÞ þ bSðv; kÞ ¼ F ðvÞ ð2:12Þ
bSðu; vÞ þ cSðv; tÞ ¼ 0 ð2:13Þ
cSðk; lÞ ¼ 0 ð2:14Þ
for all ðv; v; lÞ 2
QS

i¼1H 1
DðXiÞ �

Q
Cij�CH�

1
2ðCijÞ �

Q
Cij�CH

1
2ðCijÞ.

2.2. Finite element discretization

Next, we discretize the problem in the mixed formulation (2.12)–(2.14) by the finite element method. Let
uN 2 V �
YS

i¼1

H 1
DðXiÞ kN 2 K �

Y
Cij�C

H�
1
2ðCijÞ tN 2 T �

Y
Cij�C

H
1
2ðCijÞ
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Our discrete problem can be stated as follows: Find (uN,kN, tN) 2 V · K · T such that
aSðuN ; vN Þ þ bSðvN ; kN Þ ¼ F ðvN Þ ð2:15Þ
bSðuN ; vN Þ þ cSðvN ; tN Þ ¼ 0 ð2:16Þ
cSðkN ; lN Þ ¼ 0 ð2:17Þ
for all (vN,vN,lN) 2 V · K · T.
We now define specific finite dimensional spaces that we use to implement the three-field algorithm and gen-

erate numerical examples later. It is common to use piecewise polynomials as basis elements in such finite ele-
ment formulations; however, we have chosen to use tensor product B-splines due to their simplicity in
formulation and efficiency of evaluation. Additionally, they form a basis for piecewise polynomials over tensor
product domains with certain controls over continuity at element boundaries.

Let t = {ti} be a sequence of real values such that ti 6 ti+1 < ti+k, for which k is some positive integer. This
sequence corresponds to the subintervals for the piecewise polynomials, with multiplicity lowering order of
continuity at each break point. We define the ith univariate B-spline of order k for the knot sequence t,
denoted Bi,k,t, by the following:
Bi;k;tðxÞ ¼ ðtiþk � tiÞ½ti; . . . ; tiþk�sðs� xÞk�1
þ ð2:18Þ
where ½ti; . . . ; tiþk�sðs� xÞk�1
þ is the kth divided difference over s of the truncated power function. The following

well-known properties of these functions make them a suitable choice for basis functions in finite elements (see
[11]):

1. Bi,k,t has local support, i.e., Bi,k,t(x) = 0 if x 62 [ti,ti+k].
2. Bi,k,t is positive on its support, i.e., Bi,k,t(x) > 0 if ti < x < ti+k.
3. The B-splines of order k sum to 1, i.e.,
X
i

Bi;k;t ¼
Xs�1

i¼rþ1�k

Bi;k;tðxÞ ¼ 1; tr < x < ts ð2:19Þ
4. The B-splines of order k are linearly independent.

As mentioned, the B-splines, {Bi,k,t: i = 0, . . . ,k} form a basis for the piecewise polynomials of order k with
break points defined by t.

For simplicity, we restrict our domains and subdomains to products of intervals, i.e., [x1,x2] ·
[y1,y2] · [z1,z2]. We choose knot sequences ti, i = 1–3, one for each spatial dimension of the domain. Let us
define the trivariate tensor product B-splines
Blmnðx; y; zÞ ¼ Bl;k;t1
ðxÞBm;k;t2

ðyÞBn;k;t3
ðzÞ.
Note that we have freedom to choose the knot sequences and spline order, which may be chosen independently
for each spatial dimension. However, for the results that follow, we assume they are the same.

For each subdomain, Xi, we let Vi be the span of such tensor product B-splines. For each interface, Cij we
use bivariate tensor product B-splines, letting Kij ¼ SpanfBlmg � SpanfBl0m0 g, noting that the basis elements
are defined with specific knot sequences corresponding to the interface Cij. Equivalently, we define the trace
space at each interface, Cij, by Tij = Span{Blm} which may be chosen independently from Kij. Then our finite
dimensional spaces are given by
V ¼
YS

i¼1

V i; K ¼
Y

Cij�C

Kij and T ¼
Y

Cij�C

T ij
It should be noted that for our numerical experiments mentioned later we set the meshes on each of the spaces,
Kij and Tij, as the coarsest mesh of the adjacent spaces. One notable result of these spline spaces follows from
the local support mentioned above. For any two basis elements out of the spline space, Vi, we have
BlmnBl0m0n0 ¼ 0 if maxfjl� l0j; jm� m0j; jn� n0jg > k
which leads to sparsity in the stiffness matrix.
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As the next natural step in the finite element procedure, we express the unknowns uN, kN, tN as a linear
combination of the respective basis functions. Then, choosing the test functions vN, vN, lN to be basis func-
tions themselves then converts the above system of integral equations into a matrix system that is solved for
the unknowns uN, kN, tN.

3. An error estimate

We will now prove that the error in the solution for this mixed method is bounded by an approximation

error term eA(u) and a consistency error term eC(u). Let us now define the spaces
X ¼
YS

i¼1

H 1
DðXiÞ �

Y
Cij�C

H�
1
2ðCijÞ �

Y
Cij�C

H
1
2ðCijÞ

X ¼ V � K� T
Recall that the exact solution ðu; k; tÞ 2 X satisfies (2.12)–(2.14) while the approximate solution (uN,kN, tN)

satisfies (2.15)–(2.17). Let us define,
PS

i¼1krvik2
0;Xi

� �1
2 ¼ jvj1;S .

Also, let XN be the subspace of X satisfying the homogeneous Eq. (2.16). We then have the following the-
orem. Note that lN is specifically associated with vN such that the homogeneous Eq. (2.16) hold for all vN 2 K.

Theorem 3.1. If ðu; k; tÞ 2 X satisfies (2.12)–(2.14) and (uN,kN, tN) 2 X satisfies (2.15)–(2.17) then
ju� uN j1;S 6 C inf
wN2X N

ju� wN j1;S þ sup
vN2X N

inf
nN2K

bSðvN � lN ; k� nN Þ
jvN j1;S

 !
ð3:20Þ
Proof. For any vN 2 XN and wN 2 XN, we have from (2.12) and (2.15)
aSðuN � wN ; vN Þ þ bSðvN ; kN Þ ¼ aSðu� wN ; vN Þ þ bSðvN ; kÞ ð3:21Þ
Using (2.16) and (2.17) we have
bSðvN ; kN Þ ¼ 0 ð3:22Þ
As mentioned above, let us choose lN 2 T �
Q

Cij�CH
1
2ðCijÞ associated with vN such that the homogeneous Eq.

(2.16) hold for all vN 2 K. Thus (2.14) yields
bSðvN ; kÞ ¼ bSðvN ; kÞ þ cSðk; lNÞ ð3:23Þ
Now for all nN 2 K, (2.16) gives
bSðvN ; nN Þ þ cSðnN ; lN Þ ¼ 0 ð3:24Þ
Using (3.24), we can rewrite (3.23) as
bSðvN ; kÞ ¼ bSðvN ; k� nN Þ þ cSðk� nN ; lN Þ
¼ bSðvN � lN ; k� nN Þ

ð3:25Þ
Substituting (3.22) and (3.25) in (3.21) yields
aSðuN � wN ; vN Þ ¼ aSðu� wN ; vN Þ þ bSðvN � lN ; k� nN Þ ð3:26Þ

Dividing by jvNj1,S throughout and taking the supremum over all vN 2 XN, Eq. (3.26) becomes
sup
vN2X N

aSðuN � wN ; vNÞ
jvN j1;S

6 sup
vN2X N

aSðu� wN ; vNÞ
jvN j1;S

þ sup
vN2X N

bSðvN � lN ; k� nN Þ
jvN j1;S

ð3:27Þ
Since uN 2 XN, we may choose vN = uN � wN so that, the left hand side of (3.27) becomes
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sup
vN2X N

aSðuN � wN ; vN Þ
jvN j1;S

P CcjuN � wN j1;S ð3:28Þ
where we have used the coercivity of the bilinear form aS(Æ,Æ). For the first term on the right hand side of (3.27),
we can use the boundedness of the bilinear form aS(Æ,Æ) to yield
sup
vN2X N

aSðu� wN ; vN Þ
jvN j1;S

6 Cbju� wN j1;S ð3:29Þ
Using the triangle inequality, we have
ju� uN j1;S 6 ju� wN j1;S þ juN � wN j1;S ð3:30Þ
Using (3.27)–(3.29), one can then simplify (3.30) to obtain
ju� uN j1;S 6 C inf
wN2X N

ju� wN j1;S þ sup
vN2X N

inf
nN2K

bSðvN � lN ; k� nN Þ
jvN j1;S

 !
�

4. Numerical results

In this section, we demonstrate the performance of the numerical technique discussed in Section 2 in three
spatial dimensions. Our calculations are performed for the model problem (2.3) over the domain
[0,2] · [0,1] · [0,1] (see Fig. 3). We partition this domain into two sub-domains X1 and X2, by the interface
plane x = 1. For this example, we implement using only Dirichlet boundary condition for the domain, X.
Other boundary conditions can also be easily implemented. We utilized a direct linear solver for the solution
of the large matrix systems. Specifically, we used and tested the package MUMPS (a MUltifrontal Massively
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Fig. 3. Domain decomposition where m = 2 and n = 3.

4.1

q1 r q2 p2 m n DOF H1 error

2 1 2 3 2 3 157 11.87675871
2 1 2 3 4 6 639 2.32783819
2 1 2 3 6 9 1669 0.87902316
2 1 2 3 8 12 3457 0.45012675
2 1 2 3 10 15 6213 0.27060945
2 1 2 3 12 18 10147 0.17972068
2 1 2 3 14 21 15469 0.12750407



Table 4.2

Convergence rates for p1 = p2 = 3 Convergence rates for p1 = p2 = 2

q1 r q2 H1 rate q1 r q2 H1 rate q1 r q2 H1 rate q1 r q2 H1 rate

0 0 0 O(h2) 3 0 3 O(h) 0 0 0 O(h2) 2 0 2 O(h)
1 1 1 O(h3) 3 1 3 O(h2) 1 1 1 O(h2) 2 1 2 O(h2)
2 2 2 O(h3) 3 2 3 O(h3) 2 2 2 O(h2) 2 2 2 O(h2)
3 3 3 O(h3) 3 3 3 O(h3)
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Parallel sparse direct Solver) which is partially support by the Esprit IV Project PARASOL, and by CERF-
ACS, ENSEEIHT-IRIT, INRIA Rhone-Alpes, LBNL-NERSC, PARALLAB and RAL.

For these experiments, we choose a to be the identity matrix and set b = 0. We manufacture the right hand
side by choosing the quintic polynomial exact solution
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The non-conforming method is implemented as a mixed method discussed in previous sections. As we have
described earlier we are implementing using tensor product meshes. Although we have the freedom to choose
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Fig. 4. Convergence rates for the h-version with (m,n) = (2j,3j) for j = 1,2, . . . ,7.



Table 4.3

p1 q1 r q2 p2 m n DOF H1 error

2 2 1 2 2 4 6 429 3.525612359
3 2 1 2 3 4 6 639 2.327838189
4 2 1 2 4 4 6 925 1.504625224
5 2 1 2 5 4 6 1299 1.506151362
6 2 1 2 6 4 6 1773 1.491283643
7 2 1 2 7 4 6 2359 1.490993315
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the number of subintervals for each spatial dimension in the mesh independently, we will restrict each
sub-domain, X1 and X2, to be divided into uniformly spaced m and n grid cells, respectively, along each axis.
Thus, we have m3 elements in X1 and n3 elements in X2. As mentioned earlier, we will set the mesh on the
normal and interface spaces, K1, K2, and T, to be the coarsest mesh of the adjacent spaces, V1 and V2.
Fig. 3 illustrates an example with m = 2 and n = 3. Having chosen a polynomial solution, we expect that
for the conforming case, i.e., m = n, our finite element method should be able to recover the exact solution,
given a high enough polynomial degree in the finite element spaces.

For i = 1, 2, let pi, qi, r be the degrees of the B-splines in the approximation spaces Vi, Ki, T, respectively. To
begin with, we consider the h-version for the non-conforming method, i.e., we fix the degrees for the B-splines
and refine the meshes on each sub-domain. For this version, we set (p1,p2,q1,q2, r) = (3,3,2,2,1) and consider
the mesh refinements, (m,n) = (2k, 3k) where k = 1,2, . . . ,7. The results are shown in Table 4.1. We denote the
number of degrees of freedom by DOF, which is the size of the matrix generated in the discretization of
the mixed formulation, given by (2.15)–(2.17). The error is the percentage relative error that is calculated in
the broken H1 norm. It is clear from Table 4.1 that the refinement of the mesh results in an increase in dimen-
sion of the problem and the error appears to converge to zero. The convergence rate is observed to be O(h2). It
is noted that in the conforming case we expect an optimal rate of convergence of O(h3) and for the non-con-
forming case we would not expect an improvement. Through additional experimentation it was noticed that
changing the degrees of normal and trace spaces has an effect on the rate of convergence. This is illustrated by
Table 4.2 and in Fig. 4 where various convergence rates are given for the h-version where p1 = p2 = 3 and
(m,n) = (2k, 3k) for k = 1,2, . . . ,7. Additionally, convergence rates are included for the case where
p1 = p2 = 2, for which we expect the optimal convergence rate of O(h2). The rates are given when the degrees
of the discretized trace and normal spaces vary. In most of the test cases, our expected optimal rate of con-
vergence is attained. In future research, we plan to further investigate the relationships between the rate of
Table 4.4

p1 q1 r q2 p2 m n DOF H1 error

5 0 0 0 5 4 6 1250 2.801564749
5 1 1 1 5 4 6 1277 0.162857952
5 2 2 2 5 4 6 1310 0.000096429
5 3 3 3 5 4 6 1349 0.000063664
5 4 4 4 5 4 6 1394 0.000020413
5 5 5 5 5 4 6 1445 0.000019057

Table 4.5

p1 q1 r q2 p2 m n DOF H1 error

2 2 2 2 2 5 5 696 1.68009611
3 2 2 2 3 5 5 976 0.14098045
4 2 2 2 4 5 5 1344 0.01057147
5 2 2 2 5 5 5 1812 0.00000000



Fig. 5. Error on interface with (m,n) = (4,6) for p1 = p2 = k for k = 1–4 (p-version).
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convergence and the degrees of the trace and normal spaces, K1, K2, T. It is clear from the results in these
experiments that both terms of the error estimate (3.20) are significant.



Fig. 6. Error of the first partial with respect to x on interface with (m,n) = (4,6) for p1 = p2 = k for k = 1–4 (p-version).
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Next, we consider the p-version for the non-conforming method, i.e., we fix the mesh sizes for each domain
and refine the polynomial spaces to obtain better error. At this point we set (m,n) = (4,6), (q1,q2, r) = (2,2,1)
and let pi increase from 2 to 7 for i = 1, 2. Thus we are increasing the order of the splines on each space Vi, for



Fig. 7. Error on interface with (m,n) = (2k,3k) for k = 1–4 (h-version).
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i = 1, 2. The results are shown in Table 4.3. As the order increases, the error does decrease, as expected. Also,
note that because of the low order on K1, K2, T, we do not have a drastic decrease in the error. Additionally,
monotonocity may not be expected because the spaces are not nested. Therefore, we consider the following



Fig. 8. Error of the first partial with respect to x on interface with (m,n) = (2k, 3k) for k = 1–4 (h-version).
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numerical experiment. As before, let (m,n) = (4, 6), but this time we fix (p1,p2) = (5, 5). Now consider the com-
binations (q1,q2, r) 2 {(0, 0,0),(1, 1,1),. . .,(5,5,5)}. The results are shown in Table 4.4. Increasing the degree of
the discretized normal and trace spaces forces the error to decrease as expected.
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Now we simulate the conforming method by setting m = n = 5. With matching meshes from both domains
at the interface, we should be able to obtain nice convergence irrespective of the order on the normal and trace
spaces. Let us set (q1,q2, r) = (2, 2,2) and let (p1,p2) 2 {(2, 2),(3, 3),(4, 4),(5, 5)}. The results are illustrated by
Table 4.5. As predicted, the method behaves as a conforming method, giving zero error when (p1,p2) = (5, 5).

In conclusion of this section, we compare the exact point-wise function and derivative values extracted
along the interface x = 1 with those obtained by the non-conforming finite element method. We look at a grid
of points over the interface. We fix the mesh to be (m,n) = (4,6), set the polynomial degrees pi, qi, r to be all the
same (=k) and consider combinations k = 1–4. The finite element solution is calculated as the average value at
the interface from each approximation space, Ki, for i = 1, 2. In Fig. 5, we plot the error between the exact
solution and the finite element solution for each k = 1–4. The corresponding contour plots for each plot
are also presented. For each of these figures, the error is calculated as the point-wise difference along a grid
of points on the interface. Following this, in Fig. 6 we plot the difference between the first partial derivatives
with respect to x of the exact solution and finite element solution. The partial derivatives with respect to y and
z behave similarly in convergence and are thus omitted. Next, in Fig. 7, we consider the mesh refinement
(m,n) = (2k, 3k) where k = 1–4 and we fix (p1,p2,q1,q2, r) = (3,3,2,2,1). As before, Fig. 8 has the error plotted
for the first partial derivative in the x direction. Noting the range on the vertical axis, each of these figures
clearly illustrate that the approximation becomes better as k increases, both in the p-version and the h-version.

5. Conclusion

A computational methodology for coupling solutions over non-matching grids has been presented via the
three-field method in three dimensions. An abstract error estimate has been derived for the numerical solution.
Our numerical implementation of the technique and the results clearly suggests that the method proposed
herein is a reliable technique for solving multi-physics problems.
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