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Abstract

In engineering applications, there is a constant need for solving problems using finite

elements, over large and complicated domains. Such analysis is often accomplished by

decomposing the global domain into several sub-domains and performing the analysis

individually on each local sub-domain. The global analysis can then be realized by

piecing together the information that is available from each sub-domain. Non-con-

forming finite elements are particularly useful in this regard. In this paper, we discuss

such a technique for a model problem. We derive necessary and sufficient conditions in

order for the mixed method formulation of such a non-conforming method to have a

unique solution. Error estimates for the finite element solution are obtained. Finally, we

present computational experiments to demonstrate that this non-conforming technique

is a good candidate for finite element implementation.
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1. Introduction

Finite element methods have become an essential numerical and computing

tool in most areas of mechanics. These techniques have spawned a wide variety

of commercial p and hp version [2] programs whose success reveals the practical

importance of these methods. However, even such techniques can become very
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challenging if the global domain is quite complex. A typical application will be

the design of complex structural components (e.g. automobile components, the
wing and fuselage of aircraft, etc.) being modeled simultaneously by different

analysts. Non-conforming techniques help us to piece together the parts that

are modeled independently, without sacrificing accuracy or efficiency. More-

over, one can also impose selective refinement only on those sub-components

where it is required. Hence, in a variety of industrial applications, it is im-

portant to employ an efficient method that uses the (already) existing sub-

meshes to solve the global system.

Fig. 1(a) shows an illustration of such a modeling complexity. Here we have
a critical region ABCD where extra refinement is needed around the hole,

whereas in the rest of the domain the refinement can be coarser. Using con-

forming techniques, one must perform transition modeling to coordinate the

meshes around this critical region. The transition region usually includes tri-

angular and/or distorted quadrilateral elements both of which contribute to

modeling complexity and could, for severe distortions, result in solution in-

accuracy. Therefore, methods which permit a high level of refinement in the

local region (i.e., the critical region) and a coarser level of refinement in the
global region (i.e., the region away from the critical region) without requiring

transition modeling are highly desirable. Such an ideal situation is shown in the

non-conforming mesh of Fig. 1(b). In this case the meshes from the two dif-

ferent levels of refinement do not match, which then allows the sub-meshes to

be constructed independently. Hence the finite elements in all regions may be

constructed as regularly shaped as possible. This coupling approach may also

Fig. 1. (a) Conforming and (b) non-conforming mesh.
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be used to connect large sub-structures such as wing and fuselage structures

that may have been modeled by different analysts in different groups or or-
ganizations. Transition modeling can become quite complex, tedious and ex-

pensive in such cases because the finite element nodes of each component at the

common interface are not, in general, coincident. The use of non-conforming

methods (at the sub-domain level) can help in this regard. Moreover, it is

natural to distribute independently modeled sub-domains across a parallel

computer architecture via this sub-meshing technique. Some related parallel

domain decomposition approaches can be found in [4,9].

Briefly, in these methods the inter-domain continuity requirement,

si � sj ¼ 0 on Cij; ð1:1Þ

is enforced by using one or more interface spaces in a weak sense. Here
Cij ¼ oXi \ oXj is the interface between two sub-domains Xi and Xj and si, sj

are the values of the test or trial function on Cij from the two sides. An example
of such a technique is the mortar finite element method [3,5,6,16]. Some other

examples can be found in [8,11,18] (some of these are defined only at the inter-

element, rather than the inter-sub-domain level).

Another approach would be to define an interface space corresponding to

the trace of the true solution on Cij, which forms the field t. We then introduce

two auxiliary spaces to deal with the constraints (see Fig. 2),

si � t ¼ 0; sj � t ¼ 0 on Cij: ð1:2Þ

Here, ni and nj are the respective outward normals to Xi and Xj. Variants of

this idea have been proposed in the literature in [1,7]. We point out that a

version of the method in [1] has been implemented in the commercial hp

program MSC-NASTRAN (see [12,13] for more hp computational results). In

this paper, we present the mixed method formulation and implementation of

Fig. 2. Non-conforming domain decomposition of X.
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such a non-conforming technique for a model problem. This method allows

more flexibility in the choice of the approximation spaces and therefore, has
obvious advantages over other coupling methods. We will also show, that the

mortar finite element method can be derived as a special case of this method.

2. The model problem and its discretization

Consider the following second-order model elliptic problem,

�DZ ¼ f on X; ð2:1Þ

with the boundary conditions,

Z ¼ 0 on oXD;
oZ
on

¼ g on oXN; ð2:2Þ

where X is a polygonal domain with boundary oX ¼ oXD [ oXN ðoXD \ oXN ¼
;; oXD 6¼ ;Þ. Although we consider (2.1), all our results hold for more general
problems as well, e.g. linear elasticity.
Let HkðXÞ denote the usual Sobolev space of functions with k generalized

derivatives on X, with L2ðXÞ ¼ H 0ðXÞ. Both k 
 kk;A and k 
 kHkðAÞ will be used to
denote the norm of HkðXÞ. We then define the energy space,

H 1
DðXÞ ¼def fZ 2 H1ðXÞjZ ¼ 0 on oXDg:

Note that the definition of these spaces can be extended to non-integer values

of k by interpolation. For instance, for any interval I, H 1=2
00 ðIÞ can be the

space obtained between L2ðIÞ and H 1
DðIÞ. With these definitions, the form

(2.1) is equivalent to the following variational form: Find Z 2 H 1
DðXÞ satisfying,

for all v 2 H 1
DðXÞ,

aðZ; vÞ ¼def
Z

X
rZ 
 rvdx ¼

Z
X
fvdxþ

Z
oXN

gvds ¼def FðvÞ: ð2:3Þ

In order to define the finite element discretization, we assume X is the

union of S non-overlapping polygonal sub-domains fXigSi¼1 such that

oXi \ oXjði < jÞ is either empty, a vertex, or an entire edge of Xi and Xj. For

simplicity, let us assume that we are solving this problem over a domain X,
which is divided into two sub-domains X1 and X2 with their common interface

denoted by C12 (see Fig. 3).
Then our problem of finding the continuous solution Z which satisfies (2.1)

and (2.2) becomes solving for si (the interior solution variable in each domain
Xi), which satisfies for i ¼ 1; 2,
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� Dsi ¼ fi on Xi;

si ¼ 0 on oXD \ oXi;

osi

oni
¼ g on oXN \ oXi

ð2:4Þ

along with the continuity condition enforced on the trace of the solution on C12
given by, si ¼ t on C12. Here, t is a new unknown we introduce, called the
interface displacement on C12. Note that, we can rewrite this condition in in-

tegral form as,Z
C12

siwds ¼
Z

C12

twds; ð2:5Þ

where w is any function in H�1=2ðC12Þ. We now introduce the test functions vi
(corresponding to each domain Xi) such that, vi ¼ 0 on oXD \ oXi and write

(2.4) in variational form. This then gives, for i ¼ 1; 2,Z
Xi

rsi 
 rvi dx�
Z

C12

osi

oni
vi ds ¼

Z
Xi

fivi dxþ
Z
oXi\oXN

givi ds: ð2:6Þ

Note that, since the solution is smooth in the interior of X,

os1

on1
þ os2

on2
¼ 0:

Introducing a new unknown variable ni ¼ �ðosi=oniÞ ði ¼ 1; 2Þ, the above
equation can also be written in integral form as,Z

C12

ðn1 þ n2Þlds ¼ 0 ð2:7Þ

for all l 2 H 1=2ðC12Þ.
To discretize (2.5)–(2.7) by the finite element method, we choose finite di-

mensional spaces for the unknown u ¼ ðs1; s2; n1; n2; tÞ. For i ¼ 1; 2, let si,

Fig. 3. Domain decomposition of X.
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vi 2 Si � H 1
DðXiÞ, ni, wi 2 Ni � H�1=2ðC12Þ and t, l 2 T � H 1=2ðC12Þ. Let sijC12

be the trace space for si. Then our problem can be stated as follows:
Find u ¼ ðs1; s2; n1; n2; tÞ 2 S1 � S2 � N 1 � N 2 � T such that for all ðv1; v2;w1;
w2; lÞ 2 S1 � S2 � N 1 � N 2 � TZ

X1

rs1 
 rv1 dxþ
Z

C12

n1v1 ds ¼ F1ðv1Þ; ð2:8ÞZ
X2

rs2 
 rv2 dxþ
Z

C12

n2v2 ds ¼ F2ðv2Þ; ð2:9ÞZ
C12

s1w1 ds�
Z

C12

tw1 ds ¼ 0; ð2:10ÞZ
C12

s2w2 ds�
Z

C12

tw2 ds ¼ 0; ð2:11Þ

�
Z

C12

ðn1 þ n2Þlds ¼ 0; ð2:12Þ

where

FiðviÞ ¼
Z

Xi

fivi dxþ
Z
oXi\oXN

gvi ds:

Remark 2.1. If we choose the spaces N 1 ¼ N 2 ¼ N , then in (2.10) and (2.11) we
can choose w1 ¼ w2 ¼ v 2 N . Subtracting (2.11) from (2.10) then gives,Z

C12

ðs1 � s2Þv ¼ 0 8v 2 N :

Suppose moreover that N is a space of piecewise polynomials on a given tri-

angulation of the edge C12. Also, set n ¼ n1 ¼ �n2. Then (2.12) is satisfied, and
(2.8)–(2.12) becomes,Z

X1

rs1 
 rv1 dxþ
Z

C12

nv1 ds ¼ F1ðv1Þ;Z
X2

rs2N 
 rv2 dx�
Z

C12

nv2 ds ¼ F1ðv2Þ;Z
C12

ðs1 � s2Þvds ¼ 0:

Hence adding the above equations, our problem is simplified to finding
ðs1; s2; nÞ. It can be shown that for a simple choice of approximation of the
normal spaces, the above mixed formulation yields the mortar finite element

method [15,17].
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Let us now define the finite dimensional spaces, to be the following,

Si ¼ Spanfsi1; si2; . . . ; sipig for i ¼ 1; 2;

Ni ¼ Spanfni1; ni2; . . . ; niqig for i ¼ 1; 2;

T ¼ Spanft1; t2; . . . ; trg;
where sij, n

i
j, tj are piecewise polynomials. (Note that, s

i
j vanish on oXD \ oXi.)

Then we can express, for i ¼ 1; 2,

si ¼
Xpi
j¼1

aijs
i
j; ni ¼

Xqi
j¼1

bijn
i
j; t ¼

Xr
j¼1

djtj: ð2:13Þ

Since, ðv1; v2;w1;w2; lÞ 2 S1 � S2 � N 1 � N 2 � T , we can choose for i ¼ 1; 2,

vi ¼ sik; wi ¼ nik; l ¼ tk: ð2:14Þ
Substituting (2.13) and (2.14) in the system (2.8)–(2.12) gives,Xp1

j¼1
a1j

Z
X1

rs1j 
 rs1k dxþ
Xq1
j¼1

b1j

Z
C12

n1j s
1
k ds ¼ F1ðs1kÞ; ð2:15Þ

Xp2
j¼1

a2j

Z
X2

rs2j 
 rs2k dxþ
Xq2
j¼1

b2j

Z
C12

n2j s
2
k ds ¼ F2ðs2kÞ; ð2:16Þ

Xp1
j¼1

a1j

Z
C12

s1j n
1
k ds�

Xr
j¼1

dj

Z
C12

tjn1k ds ¼ 0; ð2:17Þ

Xp2
j¼1

a2j

Z
C12

s2j n
2
k ds�

Xr
j¼1

dj

Z
C12

tjn2k ds ¼ 0; ð2:18Þ

�
Xq1
j¼1

b1j

Z
C12

n1j tk ds�
Xq2
j¼1

b2j

Z
C12

n2j tk ds ¼ 0: ð2:19Þ

Let Ai, Bi, Ci, i ¼ 1; 2 be the matrices defined by,

Ak;ji ¼
Z

Xi

rsij 
 rsik dx; Bk;ji ¼
Z

C12

nijs
i
k ds; Ck;ji ¼

Z
C12

tj nik ds ð2:20Þ

and let ~FF i, i ¼ 1; 2 be vectors defined as F ik ¼ FiðsikÞ. Let us also define the
vectors,

ai
!

¼ ½ai1ai2 . . . aipi �; bi
!

¼ ½bi1b
i
2 . . . b

i
qi
�; ~dd ¼ ½d1d2 . . . dr�:

Then the system of Eqs. (2.15)–(2.19) reduces to,

P~xx ¼ ~ff ; ð2:21Þ

where the solution ~xx ¼ ½ a1
!

a2
!

b1
!

b2
!

~dd �
T
, the right hand side vector

~ff ¼ ½~FF 1 ~FF 2 0 0 0 � and the general stiffness matrix P is given by,
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P ¼

A1 0 B1 0 0

0 A2 0 B2 0

ðB1ÞT 0 0 0 C1
0 ðB2ÞT 0 0 C2
0 0 ðC1ÞT ðC2ÞT 0

266664
377775: ð2:22Þ

Let us now derive the sufficient conditions for (2.21) to have a unique solution.
Note that since Ai ði ¼ 1; 2Þ are square, invertible and positive definite matrices
as they correspond to a regular finite element problem. Therefore,

A1 0
0 A2

	 

is a positive definite matrix. Taking the symmetric Schur complement [10,14],
with respect to A1 and A2 yields

ePP ¼
�BT1A�1

1 B1 0 C1
0 �BT2A�1

2 B2 C2
ðC1ÞT ðC2ÞT 0

24 35: ð2:23Þ

Note that the matrix P is invertible if and only if ePP is invertible.
Lemma 2.1. Consider the matrix Q defined by

Q ¼ B C
CT 0

	 

;

where B is a semidefinite square matrix. The matrix Q is invertible if and only if,

(A) C has full column rank and,
(B) CTx ¼ 0 and Bx ¼ 0 implies x ¼ 0.

For details of the proof of Lemma 2.1, please refer to [10,14].

In our case note that the matrix B is a negative semidefinite block matrix,

B ¼ G1 0

0 G2

	 

; ð2:24Þ

where Gi ¼ �ðBiÞTðAiÞ�1Bi.
Therefore using Lemma 2.1 and the structure of matrix B in (2.24), we have

the following theorem.

Theorem 2.1. The matrix P in (2.22) is invertible if and only if,

(A)
C1
C2

	 

has full column rank and,

(B)
P2
i¼1
CTi x

i ¼ 0 and ½B1x1;B2x2� ¼ ½0; 0� implies ½x1; x2� ¼ ½0; 0�:
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Let us interpret these conditions geometrically. Condition (A) in Theorem

2.1 implies that the normal spaces N 1;N 2 and the trace space T satisfy,

ðN 1 þ N 2Þ? \ T ¼ ;:

This relation between the spaces Ni and T required for
C1
C2

	 

to have full

column rank, can be re-expressed as follows:

Condition (A1). For each non-zero t 2 T , there exists n1 2 N 1 or n2 2 N 2 such

that,
R

C12
tn1 ds > 0 or

R
C12
tn2 ds > 0.

Condition (B) in Theorem 2.1 means that if ni?ðSijC12Þ with ðn1 þ n2Þ?T
then we have n1 ¼ 0 and n2 ¼ 0. This translates to the following condition:

Condition (B1). For any non-zero pair ðn1; n2Þ 2 N 1 � N 2 there either exists

si 2 SijC12 , such that,Z
C12

nisi ds > 0 for i ¼ 1 or i ¼ 2 ð2:25Þ

or there exists t 2 T such thatZ
C12

ðn1 þ n2Þtds > 0: ð2:26Þ

Remark 2.2. Note that in [1], the following conditions have been presented for

invertibility:

dimðTÞ6 maxðdimðN 1Þ; dimðN 2ÞÞ; ð2:27Þ

dimðNjÞ6 dimðSjjC12Þ ðj ¼ 1; 2Þ: ð2:28Þ

Although these might be necessary for certain classes of subspaces, they are
clearly not equivalent to conditions (A1), (B1) and are not sufficient or nec-
essary in general.

3. Error estimates

We will now prove that the error in the solution for this mixed method is

bounded by an approximation error term eAðuÞ and a consistency error term
eCðuÞ. Let us now define the spaces,

X ¼ H 1
DðX1Þ � H 1

DðX2Þ � H�1=2ðC12Þ � H�1=2ðC12Þ � H 1=2ðC12Þ;
X ¼ S1 � S2 � N 1 � N 2 � T :

P. Seshaiyer, P. Smith / Appl. Math. Comput. 139 (2003) 85–100 93



Let ~uu 2 X correspond to the classical solution of (2.1). Note that this exact

solution ~uu ¼ ð~ss1; ~ss2; ~nn1; ~nn2;~ttÞ satisfies the following equations, for all ~vv ¼
ð~vv1; ~vv2; ~ww1; ~ww2; ~llÞ 2 X.Z

X1

r~ss1 
 r~vv1 dxþ
Z

C12

~nn1~vv1 ds ¼ F1ð~vv1Þ 8~vv1 2 H 1
DðX1Þ; ð3:1Þ

Z
X2

r~ss2 
 r~vv2 dxþ
Z

C12

~nn2~vv2 ds ¼ F2ð~vv2Þ 8~vv2 2 H 1
DðX2Þ; ð3:2Þ

Z
C12

~ss1 ~ww1 ds�
Z

C12

~tt ~ww1 ds ¼ 0 8 ~ww1 2 H�1=2ðC12Þ; ð3:3Þ

Z
C12

~ss2 ~ww2 ds�
Z

C12

~tt ~ww2 ds ¼ 0 8 ~ww2 2 H�1=2ðC12Þ; ð3:4Þ

�
Z

C12

ð~nn1 þ ~nn2Þ~llds ¼ 0 8 ~ll 2 H 1=2ðC12Þ: ð3:5Þ

We recall that the approximate solution u ¼ ðs1; s2; n1; n2; tÞ 2 X satisfies Eqs.

(2.8)–(2.12). Let us define,

X2
i¼1

krvik20;Xi

 !1=2

¼ jvj1;S :

We then have the following error estimate.

Theorem 3.1. Let XN be the subspace of X satisfying the homogeneous equations
(2.10) and (2.11). Let s ¼ ðs1; s2Þ 2 XN and l 2 T . Then for any ~ss ¼ ð~ss1; ~ss1Þ we
have,

j~ss� sj1;S 6CðeAð~ssÞ þ eCð~ssÞÞ;

where eAð~ssÞ and eCð~ssÞ denote the approximation error and consistency error re-
spectively which are given by,

eAð~ssÞ ¼ inf
w¼ðw1;w2Þ2XN

j~ss� wj1;S ;

eCð~ssÞ ¼ sup
v¼ðv1;v2Þ2XN

inf
ðn1;n2Þ2N1�N2

P2
i¼1

R
C12

ðni � niÞðvi � lÞds

jvj1;S
:

Proof. Using Eqs. (2.8), (2.9), (3.1) and (3.2) for any ðw1;w2Þ 2 XN and

ðv1; v2Þ 2 XN we have,
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X2
i¼1

Z
Xi

rðsi
�

� wiÞ 
 rvi dxþ
Z

C12

nivi ds
�

¼
X2
i¼1

Z
Xi

rð~ssi
�

� wiÞ 
 rvi dxþ
Z

C12

~nnivi ds
�
: ð3:6Þ

Note that,Z
C12

v1n1 dsþ
Z

C12

v2n2 ds ¼
Z

C12

tðn1 þ n2Þds ¼ 0; ð3:7Þ

where we have used (2.12). Now let l 2 T � H 1=2ðC12Þ. Then (3.5) gives,Z
C12

~nn1v1 dsþ
Z

C12

~nn2v2 ds ¼
Z

C12

~nn1ðv1 � lÞdsþ
Z

C12

~nn2ðv2 � lÞds: ð3:8Þ

Now, for all n ¼ ðn1; n2Þ 2 N 1 � N 2, (2.10) and (2.11) give,Z
C12

ðvi � lÞni ds ¼ 0 for i ¼ 1; 2:

Using the above Eq. (3.8) can then be written as,Z
C12

~nn1v1 dsþ
Z

C12

~nn2v2 ds ¼
X2
i¼1

Z
C12

ð~nni � niÞðvi � lÞds: ð3:9Þ

Substituting (3.7) and (3.9) in (3.6) we have,

X2
i¼1

Z
Xi

rðsi � wiÞ 
 rvi dx ¼
X2
i¼1

Z
Xi

rð~ssi � wiÞ 
 rvi dx

þ
X2
i¼1

Z
C12

ð~nni � niÞðvi � lÞds: ð3:10Þ

Dividing by
P2
i¼1

krvik20;Xi
� �1=2

and taking the supremum over all v ¼ ðv1;

v2Þ 2 XN, Eq. (3.10) becomes,

sup
v2XN

P2
i¼1

R
Xi
rðsi � wiÞ 
 rvi dx

P2
i¼1

krvik20;Xi
� �1=2 ¼ sup

v2XN

P2
i¼1

R
Xi
rð~ssi � wiÞ 
 rvi dx

P2
i¼1

krvik20;Xi
� �1=2 þ eð~ssÞ;

ð3:11Þ
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where eð~ssÞ is given by,

eð~ssÞ ¼ sup
v2XN

P2
i¼1

R
C12

ð~nni � niÞðvi � lÞds

P2
i¼1

krvik20;Xi
� �1=2 :

Since s ¼ ðs1; s2Þ 2 XN, we may choose vi ¼ si � wi for i ¼ 1; 2, so that, the left
hand side of (3.11) becomes,

sup
v2XN

P2
i¼1

R
Xi
rðsi � wiÞ 
 rvi dx

P2
i¼1

krvik20;Xi
� �1=2 P

P2
i¼1

R
Xi
rðsi � wiÞ 
 rðsi � wiÞdx

P2
i¼1

krðsi � wiÞk20;Xi
� �1=2

¼ js� wj1;S : ð3:12Þ
Moreover,

sup
v2XN

P2
i¼1

R
Xi
rð~ssi � wiÞ 
 rvi dx

P2
i¼1

krvik20;Xi
� �1=2 6 j~ss� wj1;S : ð3:13Þ

Now using Eqs. (3.11)–(3.13), and the triangle inequality,

j~ss� sj1;S 6 j~ss� wj1;S þ js� wj1;S 6 2j~ss� wj1;S þ eð~ssÞ
6CðeAð~ssÞ þ eCð~ssÞÞ: �

4. Numerical results

In this section, we demonstrate the performance of the numerical technique

discussed in Section 2. Our calculations are performed for our model problem

(2.1) and (2.2) on the domain in Fig. 4. We partition this domain into two

rectangular domains X1 and X2, by the interface AO. We prescribe Neumann

Fig. 4. Decomposition of X into X1 ðm ¼ 4Þ and X2 ðn ¼ 6Þ.
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boundary conditions, where oXN ¼ oX, with uniqueness maintained by im-
posing the condition u ¼ 0 at the single point B.
We choose the right hand side f in (2.1) such that our exact solution is,

Zðx; yÞ ¼ ðx2 þ y2Þ2 � 1:

The non-conforming method is implemented as a mixed method as described
earlier. For programming convenience and illustration, we restrict our meshes

to tensor product meshes with X1 divided into m2 rectangles (by taking uni-
formly spaced m grid points along x and y axes) and X2 divided into n2 (by
taking uniformly spaced n grid points along x and y axes) rectangles. Fig. 4
illustrates an example with m ¼ 4 and n ¼ 6.

For i ¼ 1; 2, let pi, qi, r be the polynomial degree of the approximation
spaces Si, Ni, T respectively. These degrees are chosen according to the nec-
essary and sufficient conditions presented in Section 2.

First, we consider the h-version for the non-conforming method i.e. we fix
the polynomial degree of the approximation spaces but keep refining the mesh

to obtain a better error. Here we consider ðp1; p2; q1; q2; rÞ ¼ ð3; 3; 2; 2; 1Þ and
the combinations ðm; nÞ 2 fð2; 3Þ; ð4; 6Þ; . . . ; ð10; 15Þg. The results are shown in
Table 1. We denote the number of degrees of freedom by DOF, which is the size
of the matrix P in (2.22). The error is the percentage relative error that is

calculated in a broken H 1 norm and it is clear from Table 1 that as we go from

a course mesh ððm; nÞ ¼ ð2; 3ÞÞ to a really fine mesh ððm; nÞ ¼ ð10; 15ÞÞ, the
dimension of the problem (DOF) increases and the error progressively de-

creases. The convergence rate is observed to be of the order Oðh3=2Þ.
Next, we consider the p-version for the non-conforming method i.e. we fix

the mesh on each domain and keep refining the polynomial spaces to obtain a

better error. Here we fix ðm; nÞ ¼ ð4; 6Þ, ðq1; q2; rÞ ¼ ð2; 2; 1Þ and increase pi
from 3 to 7 for i ¼ 1; 2. The results are shown in Table 2. Note that, the error
decreases as we increase the polynomial degree of the spaces S1 and S2. It can
also be seen that because of the low degree approximation of the spaces N 1, N 2,

T, we do not see a drastic decrease in the error. Therefore we now consider the
following experiment. We once again fix the mesh ðm; nÞ ¼ ð4; 6Þ as before,
but now we consider ðp1; p2Þ ¼ ð4; 4Þ and the combinations ðq1; q2; rÞ 2 fð1; 1; 1Þ;

Table 1

The relative error in the energy norm (for fixed polynomial degree of spaces S1, S2, N 1, N 2 and T)

in dependence on grid refinement

p1 q1 r q2 p2 m n DOF Error

3 2 1 2 3 2 3 111 7.042514

3 2 1 2 3 4 6 348 2.670658

3 2 1 2 3 6 9 715 1.480732

3 2 1 2 3 8 12 1212 0.969502

3 2 1 2 3 10 15 1839 0.696632
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ð2; 2; 2Þ; . . . ; ð4; 4; 4Þg. The results are shown in Table 3. Increasing the degree
of the approximation spaces to the normal and traces automatically makes the

error smaller as expected. Infact, since the exact solution chosen for our com-

putations is of the order 4, our error exactly becomes zero for

ðp1; p2; q1; q2; rÞ ¼ ð4; 4; 4; 4; 4Þ.
Next, we simulate the conforming method by fixing the mesh to be

ðm; nÞ ¼ ð4; 4Þ. So, now we have the meshes to be matching from both the

domains on the interface AO. One must then be able to get good results by
simply having good approximation for S1 and S2 even with a poor approxi-
mation for N 1, N 2, T. In order to test this we fixed ðq1; q2; rÞ ¼ ð1; 1; 1Þ and
increased ðp1; p2Þ ¼ fð1; 1Þ; . . . ; ð4; 4Þg and the results are illustrated in Table 4.
As predicted, the method now behaves as a conforming method and gives a

zero error when ðp1; p2Þ ¼ ð4; 4Þ.
To conclude this section, we compare the exact point-wise function and

derivative values extracted along the interface AO with those obtained via the

non-conforming finite element method. For this, we extract 10 equally spaced

Table 2

The relative error in the energy norm (for fixed non-conforming mesh) in dependence on poly-

nomial degree of spaces S1, S2

p1 q1 r q2 p2 m n DOF Error

3 2 1 2 3 4 6 348 2.670658

4 2 1 2 4 4 6 524 2.013736

5 2 1 2 5 4 6 752 1.897475

6 2 1 2 6 4 6 1032 1.859512

7 2 1 2 7 4 6 1364 1.854568

Table 3

The relative error in the energy norm (for fixed non-conforming mesh) in dependence on poly-

nomial degree of spaces N 1, N 2 and T

p1 q1 r q2 p2 m n DOF Error

4 1 1 1 4 4 6 514 0.401059

4 2 2 2 4 4 6 528 0.117679

4 3 3 3 4 4 6 542 0.003988

4 4 4 4 4 4 6 556 0.000000

Table 4

The relative error in the energy norm (for fixed conforming mesh) in dependence on polynomial

degree of spaces S1, S2

p1 q1 r q2 p2 m n DOF Error

1 1 1 1 1 4 4 64 19.470098

2 1 1 1 2 4 4 144 1.334426

3 1 1 1 3 4 4 224 0.074710

4 1 1 1 4 4 4 336 0.000000
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points in [0.1, 0.9]. We fix the mesh to be ðm; nÞ ¼ ð2; 3Þ, let the polynomial
degrees pi, qi, r to be all the same ð¼ kÞ and consider the combinations

k ¼ 1; . . . ; 4. In Fig. 5, the values of Z, Zx and Zy as obtained from the exact

solution are plotted by solid lines. Also plotted (with circles), are the values of

Z, Zx and Zy obtained from the average of the non-conforming solutions (from
X1 and X2). The figure clearly demonstrates that the approximation becomes

better as k increases. We mention that even if the values of Zx and Zy are taken
only from one side (without averaging), the results do not change much, and

the accuracy remains the same. This suggests that stress extraction can be

accurately performed even along interfaces when such non-conforming meth-

ods are used in elasticity problems. We also mention that the discontinuity in

the solution across interfaces will be extremely small, as observed also in [12].

Remark 4.1. The computational results of this study demonstrate that the non-

conforming technique presented, herein, is a good candidate for finite element

Fig. 5. Point-wise extraction of Z, Zx and Zy along AO.
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design of complicated domains. Despite being a two-dimensional study, it

provides a good insight into much more complex problems. There is however, a
need to generalize these to higher dimensions. It is clear from the formulation

that one can employ this technique to obtain a better parallelization efficiency

(the ratio of the computation time to communication time), although this needs

to be tested. The latter two aspects will be the subject of a forthcoming paper.
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