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ABSTRACT
The problem of effcient modeling and computation of the nonlinear interaction
of fluid with a solid undergoing nonlinear deformation has remained a
challenging problem in computational science and engineering. Direct
numerical simulation of the non-linear equations, governing even the most
simplified fluid-structure interaction model depends on the convergence of
iterative solvers which in turn relies heavily on the properties of the coupled
system. The purpose of this paper is to introduce a distributed multilevel
algorithm with finite elements that offers the flexibility and efficiency to
study coupled problems involving fluid-structure interaction. Our numerical
results suggest that the proposed computational methodology for solving
coupled problems involving fluid-structure interaction is reliable and robust.

1. INTRODUCTION
Distributed computing has evolved rapidly in the last decade. This has helped
develop new computational methodologies to solve complex multi-physics
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problems involving fluidstructure interactions (FSI) efficiently. The efficient
solution of such a coupled system provides predictive capability in studying
complex nonlinear interactions that arise in several applications such as blood
flow interaction with arterial wall [1, 2] to computational aeroelasticity of
flexible wing micro-air vehicles [3], where the structural deformation and the
flow field interact in a highly non-linear fashion. The direct numerical
simulation of this highly non-linear system, governing even the most simplified
FSI, depends on the convergence of iterative solvers which in turn relies on the
characteristics of the coupled system.

Domain decomposition techniques with non-matching grids have become
increasingly popular in this regard for obtaining fast and accurate solutions of
problems involving coupled processes. The mortar finite element method 
[4, 5] has been considered to be a viable domain decomposition technique 
that allows coupling of different subdomains with nonmatching grids and
different discretization techniques. The method has been shown to be stable
mathematically and has been successfully applied to a variety of engineering
applications [6, 7, 8]. The basic idea is to replace the strong continuity condition
for matching grids at the interfaces between the different subdomains by a
weaker one for problems involving non-matching grids to solve the problem in
a coupled fashion. In the last few years, mortar finite element methods have also
been developed in conjunction with multigrid techniques [9, 10, 11, 12, 13].
One of the great advantages of the multigrid approach is in the grid generation
process wherein the corresponding refinements are already available and no
new mesh structures are required. Also, the multigrid method relies only on
local relaxation over elements and the solution on different domains can be
easily implemented over parallel architectures.

The purpose of this paper is to introduce a distributed multigrid algorithm
that can be used to study different physical processes over different
subdomains involving non-matching grids with less computational effort. In
particular, we develop the method for a problem that involves an Fluid-
Structure-Thermal Interaction (FSTI). In section 2, the coupled model and
governing equations are described together with their weak formulation. In
section 3 the multigrid domain decomposition algorithm and a finite element
discretization is discussed. Section 4 outlines the distributed computational
methodology. Finally in section 5, we present the numerical experiments for the
benchmark application described and follow that with discussion and
conclusion in section 6.
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2. MODEL AND GOVERNING EQUATIONS
In this section, we present a model for the interaction of a nonlinear structural
domain interacting with a fluid medium. Note that for simplicity of presentation,
we consider a model with a structural element to be a nonlinear beam and the
methodology presented herein, can be extended to more complicated structural
elements as well. Moreover, the methodology is described for a two-dimensional
problem and can be extended to higher dimensions also. Let the rectangular
region Ω = [4m] × [2m] be the computational domain with boundary Γ (Figure 1).

Let Ωf and Ωs be the fluid and the solid subdomains, respectively. The solid
region Ωs consists of a beam, clamped at the point (1m, 0), with length equal to
0.5 m and thickness equal to 0.04 m. The fluid and the solid boundaries, Γf
and Γs are the contours of the two shaded regions and their intersection is
labeled by Γsf . Let Γf

e = Γ∩Γf and and Γs
e = Γ∩Γs be the fluid exterior

boundary and the solid exterior boundary, respectively. For simplicity let us
assume that the only boundary which can change in time is the interior
boundary Γsf .

The unsteady Navier-Stokes equations for incompressible flows are
considered in the fluid domain Ωf , while the energy equation is solved in the
whole domain Ω. In the solid region Ωs the nonlinear Euler-Bernoulli beam
equation is considered. In this approximation plane cross sections perpendicular
to the axis of the beam are assumed to remain plane and perpendicular to the
axis after deformation [14] and under these hypotheses only a one-dimensional
model is required for describing the axial and transverse deflections of the
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Figure 1. Computational domain for the FSTI problem.



beam. We will denote by Λ the beam axis and by (ξ, η) a local reference system
oriented with the ξ-axis parallel to Λ. As shown in Figure 2, variables δ and L
are the thickness and the length of the beam respectively, the interior boundary
Γsf is in (ξ, ± δ/2) for 0 ≤ ξ ≤ L and in (L, η) for −δ/2 ≤ η ≤ δ/2.

Let Γ1 Γf
e be the part of the boundary where Dirichlet boundary conditions

are imposed for the velocity field = (u1, u2); Neumann homogenous
boundary conditions are considered on the remaining part, Γf

e
\Γ1. Similarly, let

Γ2 Γ be the part of the boundary where Dirichlet boundary conditions are
imposed for the temperature T, while Neumann homogenous boundary
conditions are considered on Γ\Γ2. In ξ = 0 Dirichlet zero boundary conditions
are imposed for the solid displacements and its appropriate derivatives.
Conditions of displacement compatibility and force equilibrium along the
structure-fluid interface Γsf are satisfied.

Let ∈ H1/2(Γ1) be the prescribed boundary velocity over Γ1, satisfying the
compatibility condition, and Θ ∈ H 1/2(Γ2) be the prescribed temperature over
Γ2. Note that we use the standard Sobolev space 1 notation. The velocity, the
pressure, the temperature and the beam deflections ( , p, T, w, d) ∈ H1(Ωf )

× L2(Ωf) × H1(Ω) × H 2(Λ) × H1(Λ) satisfy the weak variational form of the
unsteady fully coupled system given by the Navier-Stokes system over Ωf
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1We are using Hk(Ω) to denote the space of functions with k generalized derivatives. We set
L2(Ω) = H 0(Ω) and note that the derivation of these spaces can be extended to non-integer
values k by interpolation.



(2)

(3)

(4)

(5)

the energy equation over Ω

(6)

(7)

and the nonlinear Euler-Bernoulli beam equation over Ωs

(8)

(9)

(10)

describing the transverse deflection w(ξ, t) and the axial beam deflection d(ξ, t).
In eqns (1–2) the continuous bilinear and trilinear forms are defined as
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(13)

where ρf and µf are the density and the viscosity of the fluid. The distributed
force in eqn (1) is the Boussinesq approximation of the buoyancy force, where

is the acceleration due to gravity, β the volumetric expansion coefficient of
the fluid and T0 a reference temperature. For T > T0 the fluid expands then the
density decreases and the buoyancy force points in the direction opposite to the
gravity. When T > T0 both the buoyancy force and the gravity point in the
same direction. In eqn (6) the bilinear and trilinear forms are defined as

(14)

(15)

where ρ, cp, and k are the density, the heat capacity and the heat conductivity,
respectively. If the integral is over the subdomain Ωf , the fluid physical
properties ρf , cpf , and kf are used, otherwise over Ωs the solid properties ρs, cps,

and ks are used. Furthermore in the solid region the trilinear form c( ; T, v) is
identically zero, since the velocity is zero. In eqn (8) the bilinear form and
the nonlinear term are given by:

(16)

(17)

where E is the Young’s modulus and I the moment of inertia for unitary
deepness. In the right hand side of eqn (8) the load due to the pressure difference
between the two sides of the beam is given. Eqn (8) represents the force
equilibrium constraint between the two subdomains Ωf and Ωs on the common
boundary Γsf . For details concerning the function spaces, the bilinear and the
trilinear forms and their properties, one may consult [15, 16]. Eqn (3), eqn (7)
and eqn (10) represent the exterior Dirichlet boundary condition for the
velocity, the temperature and the displacement, respectively. Eqns (4–5)
represent the compatibility constraints between the velocity field and the
time derivative of the respective beam deflections on Γsf .
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3. DOMAIN DECOMPOSITION & FINITE ELEMENT DISCRETIZATION
Let the domain Ω be partitioned into m non-overlapping sub-domains {Ωi}

m
i=1

such that  ∂Ωi∩∂Ωj (i ≠ j) is either empty, a vertex, or a collection of edges of
Ωi and Ωj. In the latter case, we denote this interface by Γij which consists of
individual common edges from the domains Ωi and Ωj. Let now the fluid
domain Ωf be partitioned into m non-overlapping sub-domains {Ωi

f}
m
i=1, where

Ωi
f is given by Ωi∩Ωf . The fluid partition {Ωi

f}
m
i=1 is obtained from the domain

partition {Ωi}m
i=1, subtracting the solid region from each subdomain Ωi, then Ωi

f
is an empty region if Ωi is a subset of Ωs. The common boundary between two
subregions Ωi

f and Ω j
f is denoted by Γij

f . The velocity, the pressure, the stress
vector, the temperature, the heat flux and the displacements ( , pi, , Ti, qij,

w, d ) satisfy the following system of equations
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(26)

coupled with the beam eqns (8–10) for i = 1, 2, …, m where Γi
1 = Γ1∩∂Ωi

f and
Γi

2 = Γ2∩∂Ωi. The stress vector and heat flux are

(27)

(28)

with nij
f and nij the unitary external vectors normal to the subdomains Ωi

f and Ωi,
respectively.

Remark 1: In order to account for the changing nature of the fluid and solid
subdomains, one must define a dynamic mesh for the space discretization.
However, to avoid extreme distortion, we choose to move the mesh
independently of the fluid velocity in the interior of Ωf . Such a scheme, called
arbitrary Lagrangian-Eulerian (ALE) formulation, is commonly applied when
studying fluid-structure interaction [17, 18, 19, 20]. To account for this we
introduce a grid velocity which can be any velocity satisfying the constraints

that it vanishes on Γ, it matches the fluid velocity on the interface Γsf and it is
equal to the time derivative of the displacement in the solid domain. One can
then express the Eulerian derivative as the difference between the Lagrangian
derivative and the corresponding grid velocity advection term as follows:

(29)

Substituting the new expression then into eqn (18) modifies the trilinear form
to become . In a similar fashion the Eulerian derivative of the
temperature is also expressed as a difference which modifies the corresponding
trilinear form in eqn (24) to 

Remark 2: The structural equation is discretized in time by a using
Newmark integration scheme. In this method the displacement and its time
derivative are approximated according to:

(30)w w tw t wt t t t+ += + +1
20 5∆ ∆� ��. γ

c u u T vi
g
i i i( ; , ).

� �
−

c u u u vf
i

g
i i

f
i( ; , )

� � � �
−

∂
∂

= − ⋅∇
� � �

� �u
t

Du x t t
Dt

u ug
( ( ), )

( ) .

�
ug

q k T nij i ij= − ∇ ⋅ ˆ

� �
τ µij i

f
ij i

f
iju n p n= − ∇ ⋅ +ˆ ˆ

< − > =T T si j ij ij,
�

Γ 0

298 Distributed Computational Method for Coupled Fluid Structure 
Thermal Interaction Applications



(31)

(32)

In particular, the constant-average acceleration method (α = γ = 0.5) was
employed which is known to be stable for each time step and conserves energy
for free vibration problem [14].

Let us introduce a finite element discretization in each subdomain Ωi through
the mesh parameter h which tends to zero. Let {Ωi

h}
m
i=1 be the partition of the

discretized domain Ωh. Now, by starting at the multigrid coarse level l = 0, we
subdivide each Ωi

h and consequently Ωh into triangles or rectangles by families
of meshes . A typical refinement is illustrated in Figure 3.

Based on a simple element midpoint refinement different multigrid levels
can be built to reach the finite element meshes at the top finest multigridTh

i n,

Th
i,0

�� �� ��w w wt t t+ += − +θ θ θ( )1 1

� � ��w w twt t t+ += +1 ∆ α
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Figure 3. Coarse mesh l0 (top) and fine mesh l3 (bottom), built with three consecutive
midpoint refinements.



level ln. At the coarse level, as at the generic multigrid level l, the triangulation
over two adjacent subdomains, Ωi

h and Ω j
h , obeys the finite element

compatibility constraints along the common interfaces Γij
h . For details on

multigrid levels and their construction one may consult [21, 22]. By using this
methodology we construct a sequence of meshes for each multigrid level in a
standard finite element fashion with compatibility enforced across all the
element interfaces built over midpoint refinements. In every subdomain Ωi

h the
energy equations can be solved over a different level mesh, generating a global
solution over Ωh, consisting mesh solutions at different levels over different
subdomains. Let Ωi,l

h be the subdomain i where the solution will be computed at
the multigrid level l. It should be noted that the multigrid levels at which the
solution is computed over adjacent subdomains, Ωi,l

h and Ω j,k
h , may be different

from each other (l ≠ k), with no compatibility enforced across the common
interface Γij

h .

4. DISTRIBUTED COMPUTATIONAL ALGORITHM
The solution to the associated fluid-structure-thermal interaction problem is
then achieved via an iterative strategy, where four systems of equations are
solved separately and in succession, always using the latest information, until
convergence is reached. An iterative multigrid solver in conjuction with a
Vanka type smoother [23] is used for the Navier-Stokes, the energy equation
and the grid velocity equation systems. For the solution of the non-linear beam
equation a direct nonlinear solver is used. The distributed computational
algorithm employed is summarized in Figure 4.

At each iteration, the linearized Navier-Stokes system is assembled, using
the latest updated value of the temperature T and the latest updated value of the
grid velocity in the nonlinear term . In the nonlinear term,

the first of the two velocity is considered explicitly. On the boundary Γsf
Dirichlet boundary conditions are imposed according to the latest updated
value of the beam displacement time derivatives w· and d

·
. A V-cycle multigrid

algorithm is used to obtain a new updated solution for the pressure p and the
velocity . Then the energy equation system is assembled, using the
previously evaluated velocity and grid velocity in the advection term

. A multigrid V-cycle is solved and updated values of the

temperature T are found. Finally the beam equation system is built, where the load
field is computed using the previous evaluated pressure p. Since the number of
the subdomain unknowns is limited a direct nonlinear solver can be used for

c u u T vg( ; , )
� �

−

�
u

�
u

c u u u vf g f( ; , )
� � � �

−
�
ug

300 Distributed Computational Method for Coupled Fluid Structure 
Thermal Interaction Applications



computing the new displacements w and d and the appropriate time derivatives.
The grid velocity is then computed to accomodate ALE and the grid nodes are
advected along the corresponding characteristic lines. The whole procedure is
repeated until convergence is finally reached.

The Navier-Stokes, energy and grid-velocity systems are solved using a fully
coupled iterative multigrid solver [23] with a Vanka type smoother. Multigrid
solvers for coupled velocity/pressure system compute simultaneously the
solution for both the pressure and the velocity field, and they are known to be
one of the best class of solvers for laminar Navier-Stokes equations (see for
examples [21, 22]). The Vanka smoother employed in our multigrid solver
involves the solution of a small number of degrees of freedom given by the
conforming Taylor-Hood finite element discretization used. For this kind of
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element the pressure is computed only at the vertices while the velocity field is
computed also at the midpoints. Examples of computations with this kind of
solver can be found in [9, 10, 11, 21, 22].

In order to increase the convergence rate, the considered Vanka type
smoother has been coupled with a standard V-cycle multigrid algorithm. The
multigrid does not change the nature of the solver, but allows the information
to travel faster among different parts of the domain. A rough global solution is
evaluated on the coarsest mesh l = 0 and projected on the finer grid l = 1, where
Vanka-loops are performed improving the smaller aspects of the solution.
The updated solution is then projected on the mesh level l = 2 and improved.
The procedure is repeated until the finest mesh is reached. Solving the equation
system in fine meshes improves solution details, but at the same time reduces
the communication speed over the domain. However, this does not affect the
global convergence rate since a considerable information exchange among
different parts of the domain has been already done when solving in coarser
mesh levels. All these considerations can be directly extended to the energy
equation solver, where the same element block is considered.

5. NUMERICAL TESTS
In this section we test the performance of the distributed multilevel formulation
for the FSTI application on the geometry described in Figure 1. On the left side
of the domain inflow boundary conditions are imposed for the velocity field

= (u1, u2), with parabolic profile u1 = 0.1 y (2−y) m/s and u2 = 0. On the
right side of the domain pressure outflow boundary conditions are imposed
while on the remaining part of the boundary non-slip conditions are considered.
The temperature is set equal to 0°C in the inlet region and to 100°C on the solid
boundary where the beam is clamped. Adiabatic conditions are imposed on the
rest of the domain. The initial conditions for both the temperature and the
velocity field are zero.

The fluid and the solid properties are chosen in order to produce a large
deformation of the beam. This choice may violate the assumption that cross
sections perpendicular to the axis of the beam are assumed to remain plane and
perpendicular to the axis after deformation. However it implies strong
interactions among all the parts of the system and test the reliability and
robustness of the solver in complex situations.

In the Navier-Stokes system, the fluid density, the viscosity, the volumetric
expansion coefficient and the reference temperature are equal to ρf = 100 kg/m3,

µf = 0.01 Kg/ms, β = 0.01 K−1 and T0 = 0°C, respectively. In the energy

�
u
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equation the solid density is ρs = 200 kg/m3. The heat capacity and the heat
conductivity are cp = 100 J/Kg K and K = 10 W/m K, in the fluid region,
and cp = 10 J/Kg K and K = 400 W/m K, in the solid region. The stiffness
for unitary length of the beam is equal to 1 kg m2/s2.

In all the simulations the same time step ∆t = 0.01 s is used, for a total of
500 time steps (5 seconds). Only the four mesh level configurations, l0, l1, l2
and l3, are considered and in Figure 3, the two different mesh configurations,
l0 and l3, are shown. The coarse mesh l 0 has 207 elements, while the fine mesh
l3 obtained after three consecutive midpoint refinements has 13248 elements.
The one-dimensional mesh on the beam axis follows the same midpoint
refinement algorithm used for the two-dimensional computational domain Ω.
On the coarse mesh level l0 three elements are available, while on the fine grid
l 3 after 3 refinements, the number of elements becomes 24. Since the number
of unknowns is quite small, (24 + 1) × 2 = 50, the solution of the non-
linear beam equation is always evaluated on the finest mesh using a direct non-
linear solver.

We apply the method to the following three types of model problems:

Case A Coupled model with rigid beam

Case B Coupled model with linear beam

Case C Coupled model with nonlinear beam

The results obtained with our coupled model (case C) are compared with the
results obtained for the same geometry with a rigid beam, E = ∞, and zero
buoyancy force β = 0 (case A), and with the results obtained neglecting only
the effects of the non-linear term (17) in the beam eqn (8) (case B). All the
computations are done at the time t = 5 s and over the finest mesh level l3.

In Figure 5 on the left, the beam bending and the corresponding grid
deformation are displayed, showing the strong influence of the pressure load
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Figure 5. Beam bending and grid movement (left); Velocity Field Map ( right ).



on the beam shape. Figure 5 on the right shows the velocity field map and
clearly indicates that the steady solution is not reached since new vortices are
constantly created and advected towards the outflow region. In Figure 6 the
velocity field (top), the pressure (bottom-left) and the temperature (bottom
right) profiles, evaluated over the section y = 0.5 for 0 ≤ x ≤ 4, are shown for
all the three cases. The combined effect of the beam deflection and of the
buoyancy force (case B and C) modify considerably all the profiles obtained
in case A (E = ∞, and zero buoyancy force β = 0 ). Even the differences
between case B and C are not negligible. The presence of the nonlinear term
in the beam equation has considerable effects on all the solution profiles,
pointing out how sensitive nature of the interaction among all the parts of the
coupled system.

The number of unknowns (velocity field, pressure, temperature and
displacement), involved in the computation at the mesh l3 is approximatively
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94000. However Figure 5 on the right shows that the only part of the system,
subjected to high vorticity is the region downstream of the beam. In the region
upstream of the beam and in the upper part of the domain the velocity field is
almost steady.

One of the motivations of this work was to develop efficient algorithms to
solve fluid-structure applications involving non-matching grids. In order to obtain
more efficient distributed computations, the solution to the associated coupled
problem must be evaluated at varying mesh levels. For instance, performing the
computations at mesh l2 or l1 in parts of the domain where the mesh l3 is not
needed can reduce the degrees of freedom. To evaluate the efficiency of the
computations we split the domain Ω into three subdomains Ω1, Ω2 and Ω3 over
which three different non-conforming meshes are built, respectively. The
subdomains and the three different non-matching grid configurations
considered are shown in Figure 7. In the subdomain Ω3 which is the solid
domain Ωs, the mesh l1 is always used. Note that this is because the
displacement is solved on a fixed grid. In the first configuration, P1 (top-right),
the meshes, l2 and l1, are considered for the subregions Ω2 and Ω1, respectively.
The different couplings of meshes, l3-l2 and l3-l1 are used in the same
subregions for the second configuration P2 (bottom-left), and the third
configuration P3 (bottom-right). Note that each of these configurations are
based on mid-point refinements and are therefore easier to implement and
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Figure 7. Domain decomposition (top-left) and the different configurations P1 (top-right),
P2 (bottom-left), P3 (bottom-right ).



test. Further, they also allow for studies involving non-matching grids. The
numbers of nodes is greatly reduced for all the three non-conforming
configurations. In particular approximatively 11000, 39000 and 28000 are 
the new numbers of unknowns for the new configurations P1 P2 and P3,
respectively. The computational CPU time and the memory allocation expenses
are consequently reduced.

In Figure 8, the deflection of the beam extreme point is compared (for the
three conforming meshes l1, l2 and l3, and for the 3 non-conforming meshes P1,
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Figure 8. Deflection of the beam extreme point for conforming and nonconforming
meshes: Linear (top-panel) and Nonlinear (bottom-panel).



P2 and P3) for both the linear (top-panel) and the non-linear (bottom-panel)
cases. The results show clear advantages of the non-conforming discretizations
over the conforming ones. Obviously the path obtained with the finest mesh l3
can be considered the most accurate. The l2 path is very close to the l3 in the
first second but differences appear as soon as the time increases. The l1 path is
always below the l3, showing too much stiffness in the beam response. The
beam oscillation obtained with the non-conforming configuration P1 perfectly
overlaps the result obtained with the conforming mesh l2, and the result
obtained with the configuration P2 perfectly overlaps the result in l3. It is
possible to find very small differences between the path in l3 and the path in P3,
where there are two meshs between the two adjacent regions Ω1 and Ω2. These
results clearly indicate how one can use the non-conforming multilevel
partitioning to preserve the same accuracy in regions of interest, reducing at the
same time the degree of freedom in other parts of the domain. It must also be
pointed out that the nonlinear beam case (bottom-panel) yields a deflection that
is much stiffer than the linear beam case (top-panel). This suggests the
importance of the influence of the coupling between the axial and transverse
beam deflection to the overall coupled system.

6. DISCUSSION AND CONCLUSIONS
This paper presents a distributed computational methodology for solving Fluid-
Structure-Thermal interaction problems. A benchmark application that models
the interaction of a nonlinear beam structure in a fluid medium along with
temperature equations has been studied and tested. Our computational results
indicate that the methodology described in conjunction with the multilevel
multigrid method leads to a flexible algorithm that can be used to solve coupled
FSTI problems over non-matching grids.

We hope to test the performance of the computational methodology
presented in a parallel environment for fluid-structure applications with non-
matching grids. More specifically, we plan to perform load balancing,
scalability studies and analyze the results of the CPU times and speed-ups
obtained in a parallel infrastructure. We also plan to perform a detailed hp-
version analysis of the methodology presented in this paper. These will be the
focus of a forthcoming paper.
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