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MULTILEVEL NON-CONFORMING FINITE ELEMENT

METHODS FOR COUPLED FLUID-STRUCTURE

INTERACTIONS

E. AULISA, S. GARCIA, E. SWIM, AND P. SESHAIYER

Abstract. Computational mathematics is constantly evolving to develop novel techniques for
solving coupled processes that arise in multi-disciplinary applications. Often such analysis may
be accomplished by efficient techniques which involve partitioning the global domain (on which
the coupled process evolves) into several sub-domains on each of which local problems are solved.
The solution to the global problem is then constructed by suitably piecing together solutions
obtained locally from independently modeled sub-domains. In this paper we develop a multilevel
computational approach for coupled fluid-structure interaction problems. The method relies on
computing coupled solutions over different sub-domains with different multigrid levels. Numerical
results for the reliability of the schemes introduced are also presented.

Key words. finite element methods, fluid-structure interaction, Arbitrary Lagrangian-Eulerian
formulation, non-conforming, multilevel.

1. Introduction

The past few decades have seen significant advances in the development of com-
putational methods to obtain efficient solutions to complex coupled systems that
consist of interactions between functionally distinct components. Coupled with ad-
vances in finite element methods, these methods have provided new algorithms for
large scale simulations [13, 14]. Often in such methods, the interface continuity
between solutions in independently modeled sub-domains is enforced weakly via
Lagrange multipliers that are defined on the interface. The mortar finite element

method is one example of such a technique (see e.g. [8, 4, 5, 6, 13, 15, 16, 7, 17] and
references therein) where precise choices are described for the two fields (the inte-
rior solution variable and the interface Lagrange multiplier) to ensure stability. One
can also employ more general three-field methods, where one field represents the
solution variable on the interface and is modeled independently from the interior
solution variables on either side of the interface. Here, two Lagrange multipliers will
be required in order to enforce continuity between each interior variable and the
interface variable. In either case, Lagrange multiplier methods allow for optimal
rates of convergence along the interface between distinct components of a coupled
system.

In recent years flexible multilevel multigrid methods have been introduced [20,
19, 12, 1, 2, 3], whose solvers are based on the iterative solution of several prob-
lems over smaller domains. These techniques allow solutions to be computed at
the element level and also help us to achieve proper accuracy, load balancing and
computational efficiency. Such novel techniques provide motivation for us to de-
velop fast and efficient algorithms to solve complex fluid-structure interaction (FSI)
problems [18, 3].
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It is well known that the one of the most difficult parts of numerically approxi-
mating the fluid-structure coupling arises from the fact that the structural equations
are usually formulated with material (Lagrangian) coordinates, while the fluid equa-
tions are typically written using spatial (Eulerian) coordinates. This is important
since the nodes on the fluid mesh are attached to the surface of the structure and
hence should move with the displacement of the structure. Therefore, a straight-
forward approach to the solution of the coupled fluid-structure dynamic equations
requires moving at each time step at least the portions of the fluid grid that are
close to the moving structure. This can be appropriate for small displacements of
the structure but may lead to severe grid distortions when the structure undergoes
large motion. Several different approaches have emerged as an alternative to par-
tial re-gridding in transient computations, one of which is the Arbitrary Lagrangian
Eulerian (ALE) formulation [9, 11, 18].

When constructing a numerical method for time-dependent coupled systems that
involve a moving boundary, differences in scale between the solutions in each sub-
domain should be incorporated into the approximation. For example, in a fluid-
structure interaction where the geometry of the problem evolves due to the deforma-
tion of an elastic structure, the magnitude of the strain rate of the solid body may
be much smaller than the velocity of molecules in the fluid region. Non-conforming
finite element methods offer a promising framework for this situation since the scale
of the computational grid and degree of polynomial approximation can be refined in
each sub-domain independently. In this setting, each sub-domain is independently
partitioned by regular families of meshes, where the intersection of any two distinct
elements is either a vertex, an edge, or an empty set, and a restriction on the ratio
between edges and diameters of the elements prevents them from becoming arbi-
trarily thin. This approach will avoid the necessity of creating transition elements
between the sub-domains, which often lead to solution inaccuracy due to severe
distortions, especially in cases where an initial numerical grid is allowed to move in
response to deformation of the original domain. Our objective will be to develop a
non-conforming finite element methodology to couple a Lagrangian model describ-
ing a structure interacting with a fluid that is described by the ALE strategy in
order to simulate a full unsteady physical phenomenon.

The outline of the paper is as follows. Section 2 introduces a model fluid-
structure interaction problem and presents a brief background on the methods
that are employed to accomplish coupling. The mathematical formulation of the
non-conforming technique is illustrated on a one-dimensional problem for simplic-
ity. Numerical experiments for the one-dimensional model problem are presented
that indicate the robustness of the method introduced. Section 3 presents the ex-
tension of the problem to higher dimensions and presents the solution methodology
as well as a numerical validation through a model problem involving a beam and
fluid interaction. Finally, section 4 presents discussions and future research.

2. A One-Dimensional Model Problem and Governing Equations

For simplicity, let us now describe the mathematical formulation and solution
methodology for a fully coupled system of equations governing the interaction be-
tween a fluid and a structure in a one-dimensional setting. We will present both the
continuous problem and a discrete approximation of the model that incorporates
an ALE formulation, allowing the numerical grid in the fluid region to move along
with the interface between the two sub-domains. Such models can help to provide
insight into fluid-structure interaction effects for a totally or partially submerged
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body in a flowing liquid that are typical problems which are of great relevance in
civil and offshore engineering and naval architecture among many other fields.

Assume an initial configuration in which a fluid occupies the interval (0, 1) and an
elastic structure occupies the interval (1, 2). As the fluid flow deforms the adjacent
solid and the interface between the two moves, we will denote by γ(t) the position
of this interface at any time t ≥ 0.

  fluid structure

0 1 2

t   fluid structure

0 2γ(t)
Figure 1. Evolution of a one-dimensional domain

The position of the interface between the two media must then satisfy

γ(t) = 1 + d(t, 1), t ≥ 0,

where d(t, 1) represents the displacement of the left boundary of the elastic structure
at time t = 1 (See Figure 1). For each point x ∈ (0, γ(t)), we model the velocity u
and pressure p using a generalization of models employed by [10, 18]

(1)
∂u

∂t
(t, x)− α

∂2u

∂x2
(t, x) + (1 + β)u

∂u

∂x
(t, x) + ε

∂p

∂x
(t, x) = f(t, x).

Here, α > 0 is a parameter depending on the kinematic viscosity ν of the fluid.
The latter is a ratio of the absolute viscosity to the mass density. The constants
β ∈ [0, 1

2
] and ε ≥ 0 vary depending on the material properties of the fluid, e.g.,

compressibility. For example, the parameter choices α = 4
3
ν, β = 0, ε = 1

ρ , where

ρ = ρ(t), are used for modeling monatomic gases. Another example is a modified
version of Burgers’ equation, given by parameter choices of α = ν, β = 1

2
, ε = 0.

For stability considerations [18] let us enforce,

(2)

(
β −

1

2

)
u
∂u

∂x
(t, x) + ε

∂p

∂x
(t, x) = 0.

At the left endpoint, the boundary condition u(t, 0) = 0 is enforced for all t ≥ 0. Let
the displacement d of any point in the adjacent structure from its initial position
be modeled by,

(3)
∂2d

∂t2
(t, x) − μ

∂2d

∂x2
(t, x) = g(t, x), x ∈ (1, 2),

where μ ≥ 0, d(t, 2) = 0 for all t ≥ 0 and d(0, x) = 0, x ∈ (1, 2). Here we are using
the wave equation as a simplified version of linear elasticity in one dimension, set in
a Lagrangian formulation. Thus we should assume that deformations of the elastic
structure are small relative to the length scale.

At the interface between fluid and structure, we enforce continuity of velocities,

u(t, γ(t)) =
∂d

∂t
(t, 1)

and the continuity of the fluxes,

α
∂u

∂x
(t, γ(t)) = μ

∂d

∂x
(t, 1).

For the changing nature of the fluid domain, we will rewrite the fluid equation (1)
using an ALE formulation that avoids extreme mesh distortion near the interface.
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To do this, we will move the numerical grid independently of the fluid velocity on
the fluid domain. Let us define the grid velocity w at any point x ∈ (0, γ(t)) by

w(t, x) =
x

γ(t)
γ̇(t).

Note that w satisfies the conditions

w(t, γ(t)) = γ̇(t) w(t, 0) = 0.

Thus the grid velocity is consistent with the velocity of the fluid at the endpoints of
the fluid domain. Additionally, note that we assume that 0 ≤ γ(t) ≤ 2 for all time.
We now define a family of characteristic curves, xs(t, ξ), on which the fluid velocity
is independent of partial derivatives in other directions. Thus the characteristic
curve associated with w must satisfy

dxs

dt
(t, ξ) = w(t, xs(t, ξ))

and xs(s, ξ) = ξ for all ξ ∈ (0, γ(s)). Hence,

xs(t, ξ) = ξ
γ(t)

γ(s)
.

Let v(t, ξ) = u(t, xs(t, ξ)), i.e., let v be the fluid velocity along the characteristic
curve xs(t, ξ). Then, applying the chain rule, (1) can be rewritten for values of
ξ ∈ (0, γ(s)) as,

(4)
∂v

∂t
(t, ξ)− α

∂2u

∂x2
(t, xs) + [(1 + β)u − w]

∂u

∂x
(t, xs) + ε

∂p

∂x
(t, xs) = f(t, xs)

where xs = xs(t, ξ). Employing this ALE formulation for the fluid and an implicit

formulation for the interface position, we now wish to construct a discrete varia-
tional form for our coupled system of equations (2)-(4). First, we choose a time
step size Δt > 0 and let tn = nΔt. For any function φ defined on the continuous
domain [0, 2]× [0,∞), we denote by φn the restriction of φ to the nth time step, i.e.
φn(x) = φ(tn, x). Additionally, we subdivide the initial computational domains,
defined by the intervals (0, 1) and (1, 2), using regular partitions

{0 = x1, x2, . . . , xM = 1},

{1 = ν1, ν2, . . . , νP = 2}.

We then choose finite element spaces

V n
F ⊂ {φ ∈ H1(0,Γn) : φ(0) = 0}

and

V n
S ⊂ {ψ ∈ H1(1, 2) : ψ(2) = 0}

Given a basis for each of these spaces, we then wish to construct finite element
approximations for un, pn, and dn at each successive time step, namely Un, Pn,
and Dn. We define the movement of the fluid partition using an approximation of
wn, given by

Wn(x) =
x

Γn
Un(Γn) ∀x ∈ (0,Γn),

where Γn is the approximate position of the interface between the fluid and structure
at the nth time step, i.e.

Γn+1 = Γn +ΔtUn(Γn), n = 0, 1, 2, . . .
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and Γ0 = 1. Additionally, we approximate the characteristic curve xs(t, ξ) between
successive time steps tn and tn+1 by

(5) Xn(t) = Xn + (t− tn)Wn(Xn) ∀Xn ∈ (0,Γn), t ∈ [tn, tn+1].

Thus, if we let
Xn+1 = Xn +ΔtWn(Xn) = Xn(tn+1),

then Xn+1 represents the map of a mesh point Xn to the next time step along the
characteristic curve defined by Wn.

Note that the partition on the structural domain (1, 2) remains fixed since at
each time step we are approximating the displacement from the initial position.
We then approximate ∂tu(t, xs(t, ξ)) by:

Un+1(Xn+1)− Un(Xn)

Δt

Additionally, we approximate ∂ttd(t, x) with a central differencing scheme:

Dn+1 − 2Dn +Dn−1

(Δt)2
.

For x ∈ (0,Γn), let
Ūn+1(x) = Un+1(x+ΔtWn(x)).

Splitting the convective term in (4) and using forward and central differencing
schemes yields a discrete system for Ūn+1, P̄n+1, and Dn+1:

1

Δt
(Ūn+1 − Un)− α∂xxŪ

n+1 + (Un −Wn)∂xŪ
n+1+

βŪn+1∂xU
n + ε∂xP̄

n+1 = f̄n+1(6) (
β −

1

2

)
Ūn+1∂xU

n + ε∂xP̄
n+1 = 0(7)

1

(Δt)2
(Dn+1 − 2Dn +Dn−1)− μ∂xxD

n+1 = gn+1(8)

n = 0, 1, 2, etc., where P̄n+1 and f̄n+1 are defined in the same way as Ūn+1. The
discrete fluid and structure equations are coupled via the continuity constraints

Ūn+1(Γn) =
1

Δt
(Dn+1 −Dn)(1),

α∂xŪ
n+1(Γn) = μ∂xD

n+1(1),

and
Γn+1 = 1 +Dn+1(1).

Note that continuity of velocity is only imposed using an implicit difference approx-
imation for ∂td(t, x) at the interface. This choice, along with the choice to use an
explicit scheme to approximate the characteristic curve in equation (5), leads to
stability requirements that are explored in detail in [10]. The primary restriction
on the time step here is

Δt ≤

(
ε(1− δ)

C

)4/3

,

where ε ∈ (0, 1) is small enough to ensure that ε ≤ C0 for a constant C0 depending
only on initial conditions and external applied forces, where

||Um+1||2
L2(0,Γm+1)

+ δαΔt||∂xU
m+1||2

L2(0,Γm+1)
≤ C2

0

and
||Dm+1||L∞(1,2) ≤ C0.
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Moreover, δ ∈ (0, 1) is small enough to ensure that

|Un(Γn)|

Γn
≤

1− δ

Δt
,

and C is a constant depending only on data.
Next we multiply (6) and (7) by a test function φ ∈ V n

F and (8) by a test function
ψ ∈ V n

S and integrate over the intervals (0,Γn) and (1, 2), respectively, to obtain
the following discrete variational problem for finding Ūn+1, P̄n+1, Dn+1, and Γn+1.
For any test functions φ ∈ V n

F and ψ ∈ V n
S ,

(Ūn+1, φ)n − αΔt∂xŪ
n+1(Γn) + αΔt(∂xŪ

n+1, ∂xφ)n + εΔt(∂xP̄
n+1, φ)n

+Δt((Un −Wn)∂xŪ
n+1, φ)n + βΔt(Ūn+1∂xU

n, φ)n

= (Un, φ)n +Δt(f̄n+1, φ)n(
β −

1

2

)
(Ūn+1∂xU

n, φ)n + ε(∂xP̄
n+1, φ)n = 0

1

Δt
(Dn+1, ψ)− μΔt∂xD

n+1(1)ψ(1) + μΔt(∂xD
n+1, ∂xψ)

=
1

Δt
(2Dn −Dn−1, ψ) + Δt(gn+1, ψ)

Ūn+1(Γn) =
1

Δt
(Dn+1 −Dn)(1)

α∂xŪ
n+1(Γn) = μ∂xD

n+1(1)

Γn+1 = 1 +Dn+1(1)

where (., .)n is the scalar product on L2(0,Γn), and (., .)n is the scalar product
on L2(1, 2). Note that the continuity of velocity is only imposed using an implicit

difference approximation for ∂xd(t, x) at the interface. This method is implemented
using the finite element method and the numerical results are discussed next.

2.1. Numerical Results. In this section we demonstrate the robustness and the
performance of the non-conforming domain decomposition method introduced for
the one-dimensional model problem. In particular we consider the model problem
(1) with β = 0.5 which yields the modified Burgers’ equation defined over the
interval (0, 1). This fluid equation is coupled to the wave equation representing the
structure over the interval (1, 2). The evolution of the computational domain is
expected to be as in (1) and the results of implementing the finite element method
for the coupled model fluid-structure interaction problem is presented next.

Figures 2 and 3 plot the displacement and the velocity the profiles for time t = 0,
0.25, 0.5, 0.75, 1. The boundary condition for the velocity of the fluid is prescribed
to be 0.1 sin(2πt). The results clearly illustrate the dynamics of the fluid-structure
interaction problem as time evolves.

Next, we explored the influence of the parameter μ = μs in the wave equation.
The results of the displacement and velocity profiles are summarized in Figures 4
and 5. Our results indicate that as the parameter in the solid equations increase
from 1 to 1000, the deflection decreases.

3. Extension to higher dimensions

Consider the coupled model problem where an isotropic, non-isothermal, New-
tonian, incompressible fluid (defined in ΩF (t)) interacts with an elastic structure
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(defined on ΩS(t)) through an energy equation (defined on ΩS(t) and ΩF (t)):

ρf

(
∂�u

∂t
+ �u ∇�u

)
= −∇p+ μΔ�u+ �f + �F (TF ) in ΩF (t)(9)

∇ · �u = 0 in ΩF (t)(10)

ρfcpf

(
∂TF

∂t
+ �u · ∇TF

)
= KfΔTF in ΩF (t)(11)

ρscps

∂TS

∂t
= KsΔTS in ΩS(t)(12)

ρs
∂2�d

∂t2
+∇ · σ̃S(�d) = �G(TS) in ΩS(t)(13)

Here �u, p are the velocity and pressure unknowns of the fluid flow described by
Navier-Stokes equation (9) along with the continuity equation (10); TF , TS are the
unknown temperature in the energy equations (11)-(12) coupled to the fluid ve-

locity through a convection term; �d is the unknown structural displacement (13).

Note that �F (TF ) introduces buoyancy forces in the fluid equation which allows the

density of the fluid ρf to vary with the temperature TF . Also note that �d de-

pends on the temperature through the loading term �G(TS). All other parameters

and material properties are specified along with the fluid body force �f . Moreover,

the displacement �d also modifies the flow domain. Here σ̃S(�d) is the linearized

Cauchy stress tensor which is related to the displacement �d through an appropri-
ate constitutive formulation. Here, we have considered a linear elastic behavior
for the structure for simplicity and the proposed methodology may be modified
suitably to accommodate more complex nonlinear (geometric and material) models
that describe hyperelastic membrane materials. On the fluid-structure interface

we enforce the continuity of the fluid and structural velocities (�u = ∂�d
∂t ), fluxes

(τ̃S(�d) · �nS = τ̃F (�u, p) · �nF ) and temperatures (TF = TS). Also, system (9)-(13)
are complemented by appropriate boundary conditions governed by the physical

Figure 2. Displacement profiles for increasing time
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Figure 3. Velocity profiles for increasing time

Figure 4. Influence of the parameter μ = μs to the FSI problem
on the displacement

system. One can employ the mathematical formulation and solution methodology
discussed previously for the one-dimensional (1-D) problem, to solve much more
complex coupled problems in higher dimensions of the type (9)-(13).

3.1. Solution to the coupled problem. The solution to the associated fluid-
structure-thermal interaction problem is then achieved via an iterative strategy,
where the weak formulation of the coupled systems of equations (9)-(13) are solved
separately and in succession, always using the latest information, until convergence
is reached. An iterative multigrid solver is used for both the Navier-Stokes and
the energy equation systems since the number of unknowns could be quite large.
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Figure 5. Influence of the parameter μ = μs to the FSI problem
on the velocity

For the solution of the beam equation a direct LU decomposition is used. The
solution methodology employed is summarized in Figure 6. For the solution of the
non-linear beam equation a direct LU decomposition is used. At each iteration,
the linearized Navier-Stokes system is assembled, using the latest updated value of
the temperature and the latest updated value of the grid velocity in the nonlinear
term. In the nonlinear term, the first of the two velocity vectors is considered
explicitly. On the interface, Dirichlet boundary conditions are imposed according
to the latest updated value of the beam displacement time derivative. A V-cycle
multigrid algorithm is used to obtain a new update solution for the pressure and
the velocity. Then the energy equation system is assembled, using the previously
evaluated velocity and grid velocity in the advection term. A multigrid V-cycle is
solved and updated values of the temperature are found. Finally the beam equation
system is built, where the load field is computed using the previous evaluated
pressure. Since the number of the subdomain unknowns is limited an direct LU
decomposition solver can be used for computing the new displacement and its time
derivatives. The grid velocity is then computed and the grid nodes are advected
along the corresponding characteristic lines. The whole procedure is repeated until
convergence is finally reached.

The Navier-Stokes, energy and grid-velocity systems are solved using a fully cou-
pled iterative multigrid solver [20] with a Vanka-type smoother. Multigrid solvers
for coupled velocity/pressure system compute simultaneously the solution for both
the pressure and the velocity field, and they are known to be one of the best classes
of solvers for laminar Navier-Stokes equations [19]. An iterative coupled solution
for the linearized discretized Navier-Stokes system requires the solution of a large
number of sparse saddle point problems. In order to optimally solve the coupled
equation system, involving the unknown stress vector, we use the block Gauss-
Seidel method, where each block consists of a small number of degrees of freedom.
The characteristic feature of this type of smoother is that in each smoothing step
a large number of small linear systems of equations has to be solved. Each block
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Figure 6. Solution methodology for the coupled problem

of equations corresponds to all the degrees of freedom which are connected to few
elements. For example, for conforming finite elements, the block may consist of all
the elements, containing some pressure vertices. Thus, a smoothing step consists
of a loop over all the blocks, solving only the equations involving the unknowns
inside the elements that are around the considered pressure vertices. The veloc-
ity and pressure variables are updated many times in one smoothing step. The
Vanka smoother employed in our multigrid solver involves the solution of a small
number of degrees of freedom given by the conforming Taylor-Hood finite element
discretization used. For this kind of element the pressure is computed only at the
vertices while the velocity field is computed also at the midpoints. Over the internal
part of the generic subregion where there are no boundary elements, our Vanka-
block consists of an element and all its neighboring elements. We solve for all the
degrees of freedom inside the block, with boundary condition taken on the external
boundaries. For example, our block consists of four vertex points and 12 midpoints
to be solved, for a total of 36 unknowns. We have also used different blocks with
different performances but we have found this particular block to be very robust
and reliable even at high Reynolds numbers. Examples of computations with this
kind of solver can be found in [1, 2, 3]. In order to increase the convergence rate,
the considered Vanka-type smoother has been coupled with a standard V-cycle
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multigrid algorithm. The multigrid does not change the nature of the solver, but
allows the information to travel faster among different parts of the domain. A rough
global solution is evaluated on the coarsest mesh l = 0 and projected on the finer
grid l =1, where Vanka-loops are performed improving its details. The updated
solution is then projected on the mesh level l = 2 and improved. The procedure
is repeated until the finest mesh is reached. Solving the equation system in fine
meshes improves solution details, but at the same time reduces the communication
speed over the domain. However, this does not affect the global convergence rate
since a considerable information exchange among different parts of the domain has
been already done when solving in coarser mesh levels. All these considerations can
be directly extended to the energy equation solver, where the same element block
is considered.

Numerical results of this implementation is illustrated for the interaction of a
fluid with an elastic beam. Figure 7 shows the computational domain for the multi-
level mesh discretization and the FSI with the moving grid.

Figure 7. Computational domain showing the various mesh dis-
cretization levels

4. Discussion and Future Research

In this paper, a model fluid-structure interaction problem was formulated math-
ematically and a non-conforming computational method to solve the coupled prob-
lem was presented. Numerical results for the one-dimensional model problem val-
idated the robustness of the solution methodology. An extension of the coupled
fluid structure thermal interaction problem to higher dimensions for a model prob-
lem involving a beam and fluid interaction in a thermal field was also presented.
A multilevel computational approach for the associated fluid-structure thermal in-
teraction problem was presented that relied on computing coupled solutions over
different sub-domains with different multigrid levels. Numerical results for the re-
liability of the scheme was also presented for a benchmark problem.

As novel procedures for solving fluid-structure interaction problems are devel-
oped, it is important to build an efficient parallel infrastructure that is designed to
optimize the computational process. Hence there is a necessity to study the advan-
tages of these non-conforming methods to implement the resulting global system on
a parallel machine in an easier and faster way. Therefore the goal is to continue to
improve the efficiency (i.e. the ratio of the computation time to the communication
time) by employing these techniques.
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Also, there has been considerable amount of interest in multiscale modeling spe-
cific to either a structural problems or fluid problems and a new theory for multi-
scale approach to fluid-structure modeling is yet to be established. There is there-
fore a need to design new algorithms using our multi-disciplinary non-conforming
finite element methodology for solving fluid-structure-control interaction problems,
by taking into account the multiscale and nonlinear behavior of various components
associated with the coupled problem.

Finally, it is important to test the performance of the computational algorithms
developed realistic fluid-structure applications such as blood flow in a parent-
artery/aneurysm multistructure or computational aeroelasticy of micro-air vehicle.
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