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ABSTRACT 
 
In many real world applications, especially in engineering, solutions over large complex 
structures and/or domains are required.  By dividing the domain into substructures, solving 
the problem on each independent region, and then combining the independent solutions to 
analyze the entire region, the solution to the global domain can be found efficiently.  In this 
paper, I will discuss background research in this field, illustrate examples of different 
methods that have been used, formulate an interface numerical method that can be employed 
for coupling independently modeled substructures, and outline a solution methodology for 
solving such problems. 
 
 
1.  INTRODUCTION 
 
 In the world today, teamwork has become the norm.  Thus as applications are divided 
into separate components among different people or companies, a problem arises when the 
components must be assembled.  Numerical methods using finite elements allow the 
combination of such separate component models in an efficient manner. 

For example, one may be interested in studying a physical process on the large 
domain Ω (see Figure 1).  

 
Figure 1.  Global domain 

 
To simplify the solution methodology, the global domain Ω can be divided into two separate 
subdomains, Ω1 and Ω2 (see Figure 2).    
 

 
Figure 2.  Global domain divided into two subdomains 

 
The subdomains may be analyzed by independent modelers and hence may possess different 
mesh properties.  This causes problems when trying to integrate the two due to the non-
conformity at the interface (see Figure 3). 
 

 
Figure 3.  Assembled global domain showing overlapping interface 
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To study a physical system, a mathematical model is often constructed.  To solve the 
associated mathematical model one may employ one of the two types of solution 
methodologies: analytical and numerical.  An analytical solution is an exact answer to a 
problem.  On the other hand, a numerical solution is just an approximation.  The word 
“approximation” may cast doubt in people’s mind; however there are numerous 
mathematical methods that demonstrate that an “approximate” answer can be found which 
estimates the analytical solution within the precision available on today’s computer systems.  
A model flowchart of the process is described in Figure 4. 

               
 

Figure 4.  Solution methodology 
 

If the mathematical model is simple, one can obtain an analytical solution.  Most real world 
problems, however, are much more complex and hence require a numerical solution.  In this 
paper, one such complex application is examined.  The numerical methods that were used in 
this project were the finite difference method, the Jacobi iterative method, and spline 
interpolation techniques for solving a model diffusion equation on a complex domain. 
 
 
2.  BACKGROUND AND METHODS 
 
In this section, we describe the techniques that will be employed later for one dimensional 
and two dimensional model problems. 
 
2.1  A One Dimensional Model Problem 
 
Consider the following physical system consisting of an elastic bar under stress via a 
tangential force F(x) with fixed endpoints a and b (see Figure 5).  The objective is to 
determine the displacement U(x). 

 
Figure 5.  Elastic bar 

Physical System 

Mathematical 
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The mathematical model can be derived as follows.  First recall Hooke’s Law, 
dx
dUE=σ .  

As demonstrated in [4], Hooke’s law states that stress is directly proportional to strain, where 
E is a constant of proportionality known as Young’s Modulus.  For simplicity we let E = 1 

and the equation becomes 
dx
dU

=σ .  Taking the derivative of both sides yields .2

2

dx
Ud

dx
d

=
σ   

Moreover, the equilibrium of the elastic bar system yields )(xF
dx
d

−=
σ .  The model then 

becomes the following boundary value problem (BVP), 
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where U(a) = 0 and U(b) =0 are considered the boundary conditions which are needed to 
solve the differential equation uniquely.  To find U(x) numerically, first divide the interval 
[a, b] into N subintervals with the nodes a = x0, x1, x2, …, xi, xi+1, …., xN = b.  Then rewrite 
the continuous differential equation on each subinterval to give a discrete differential 
equation by using the finite difference method as follows, 
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Imposing the discrete equation for i = 2, 3, …., (n-1) and considering the given boundary 
conditions, the result is the following linear system of equations. 
 
 

 
The linear system can be represented as AU = F, where A is the tridiagonal matrix, and U and 
F are the vectors at each point xi.  This can be solved with Matlab using the command  
U = A \ F.  
 

Note that the finite difference method can also be used to solve more general 
boundary value problems, such as [5] 

 
)()()( xfyxQyxPy =+′+′′ , 

 
with y as the dependent variable and subject to the conditions 10 )(,)( ybyyay == .  The 
finite difference equation would be: 
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= .  The difference equation 

would be used to calculate the numerical solution in a similar fashion as the model problem. 
 

Also note that the matrix A has a lot of zero entries which makes it a sparse matrix.  
An iterative technique for solving large systems with a large number of zero entries is the 
Jacobi Method.  As is explained in [1], “to solve the linear system Ax = b” requires an initial 
approximation x(0) to the solution x, which “generates a sequence of vectors that converges to 
x.”  With the Jacobi Iterative Method, the system Ax = b is converted into an equivalent 
system of the form   x = T x + c, where T is a fixed matrix and c is a vector.  The initial 
approximation x(0) is chosen and the solution vector is generated by computing  

 
x(k) = T x(k-1) + c, 

 
for k = 1, 2, 3,...  Iterative techniques are efficient when considering computational time and 
computer storage [1]. 
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2.2  A Two Dimensional Model Problem 
 
Similar physical systems, as in 1-D, can be modeled using a two dimensional representation.  
An example of a 2-D model is the temperature distribution in a slab [5] (see Figure 6.) 

 
Figure 6.  Thin slab 

 
This is a slab of uniform material and thickness, t.  If the temperature within each element of 
size dx X dy is represented with the dependent variable, U, then Uxy is the temperature at each 
x-y point of the slab.  An extension of the model introduced in § 2.1 to 2-D can be given by   
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One can discretize this model over the domain Ω (see Figure 7). 
 

 
Figure 7.  Discretization of domain Ω 

 
using finite differences again, 
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If the step size in the x-direction equals the step size in the y-direction, i.e. yx Δ=Δ , the 
equation becomes 
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To simplify notation, each point (x, y) is represented by a single number called a node.  For 
example, (1, 1) is node 15 and (7, 3) is node 7 as shown in Figure 8. 
 

 
Figure 8.  Nodal numbering 

 
 
The discretized system of equations becomes: 
 
 
 
 
 
 
 
 
 
 
 
 
where Δh= Δx = Δy is the space between each node. 
 
 
2.3  Interpolation 
 
When data over a large domain is required and only minimal data points are available, the 
result may exhibit erratic behavior between the points. Cubic spline interpolation computes 
intermediate values between each data point [3].  If data is known at specific values, say x = 
1, 2, 3, a reasonable estimation of x at 1.5 and 2.5 can be found through interpolation.  In 
Matlab, YY = SPLINE(X, Y, XX) uses cubic spline interpolation to find a vector YY 
corresponding to XX which is the x value vector of the data points for which the estimation is 
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required.  X and Y are the given data vectors [3].  For example, as shown in Figure 9, if X = 
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and Y = sin(X), the graph is 

 
Figure 9. Graph of Y = sin(X) 

 
Now, if spline interpolation is used and XX is defined as [0:0.5:10], the graph is much 
smoother (see Figure 10). 

 
Figure 10.  Graph of YY = sin(XX) using spline interpolation 

 
The interpolation allows for the refinement of the YY values for more points in the domain. 

 
Figure 11.  Graph of Y = sin (X) in blue and graph of YY using spline interpolation in green 
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3.  THE INTERFACE PROBLEM 
 
In this section, we will describe the interface problem and formulate an overlapping interface 
technique to solve it. 
 
3.1  Division of Domain 
 
Consider a global domain Ω divided into two subdomains, Ω1 and Ω2, with m = 4 and n = 3, 
where m and n represent the number of rows in each subdomain (see Figures 12 & 13).  Let 
us for simplicity assume that both subdomains have equal number of columns.  The solution 
is computed independently for Ω1 and Ω2 using the previously discussed methods. 

 
Figure 12. Global domain in x-y plot 

 

 
Figure 13.  Subdomains, Ω1 and Ω2, with m = 4 and n = 3, respectively 

 
Once the subdomains are combined, the individual nodes on the interface do not align.  A 
magnified view of the interface can be seen in Figure 14. 

 
Figure 14.  Overlapping interface magnified 
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With the use of cubic spline data interpolation, an interface numerical solution is constructed, 
which serves as a boundary condition for each iteration, as described next. 
 
 
3.2  Methodology 
 
The code for the overlapping method, found in the appendix, allows for a mesh of any size to 
be constructed by passing the number of nodes and the number of columns in which the 
nodes will lie.  In  Ω1 of Figure 12, the number of nodes and number of columns in which the 
nodes lie are 25 and 5, respectively, so the parameters are (25, 5) .  The program constructs 
the A matrix and allows the user to enter F and the boundary conditions, as examined in § 
2.1.  Once an initial U1 vector is found, data from that vector is used for the interpolation.  
Data calculated using the spline interpolation is then used to solve the problem on Ω2.  The 
same method is followed in the second domain with new boundary values.  U2 is found for 
this domain and used for interpolation.  The process is continued until the global solution is 
within a predefined tolerance.  Next, we describe a pseudo code for the overlapping method 
algorithm. 
 
 
3.3  Psuedo Code 
 

Do 
 UU1 =  Jacobi ( n1, c1, f1, U1) 
  n1 = number of nodes in first domain 
  c1 = number of columns in which the nodes will lie 
  f1 = F vector 
  U1 = U vector (initial guess U1

(0)) 
  UU1 = new U1 which is returned  
 YY = SPLINE(X, Y, XX) 
  X = [0:1:(n1/c1-1)] 

Y = the vector constructed from the UU1 results that correspond with 
the left boundary of the second domain  

XX = [0:(n1/c1-1)/(n2/c2-1):(n1/c1-1)] 
YY = the left boundary condition of the second domain 

 Use YY as a right boundary to determine U2 
 UU2 = Jacobi ( n2, c2, f2, U2) 
  n2 = number of nodes in second domain 
  c2 = number of columns in which the nodes will lie 
  f2 = F vector 
  U2 = U vector  
  UU2 = new U2 which is returned 
 Y = SPLINE(XX, YY, X) 

XX = [0:(n1/c1-1)/(n2/c2-1):(n1/c1-1)] 
YY = the vector constructed from the UU2 results that correspond with 

the right boundary of the first domain 
X = [0:1:(n1/c1-1)] 
Y = the new right boundary of the first domain  

  Use Y as a left boundary to determine U1 
 
While (max number of iterations or predefined tolerance has not been reached)  
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4.  FUTURE RESEARCH 
 
When the large global domain is divided into several subdomains, each local domain can be 
analyzed independently.  However, in some instances, information calculated in one local 
domain is required to calculate the solution of another.  If each local domain is working on 
different processors, the sharing of such information would be easy.  Message Passing 
Interface, MPI, is a library specification “designed for high performance on parallel machines 
and workstation clusters [2].”  Information would be shared between processors or each of 
the domains allowing for ease of reconstruction of the global domain.  We propose to 
implement the solution methodology developed herein in parallel using a MPI algorithm. 
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7.  APPENDIX 
 
%%%%%%%%%%%%%%%%%%%%% 
%   interface.m       %       
%%%%%%%%%%%%%%%%%%%%% 
 
max = 0; %max number of iterations 
 
n1 = input('Please enter the number of nodes in the first domain.  ') 
c1 = input('Please enter the number of columns in which the nodes will lie. ') 
disp('Please enter the vector F in the form [1;2;3;4]') 
f1 = input('F = ') 
disp('Please enter your initial condition U(0)in the form [0;0;0;0]') 
u1 = input('U(0) = ') 
 
n2 = input('Please enter the number of nodes in the second domain.    ')  
c2 = input('Please enter the number of columns in which the nodes will lie  ') 
disp('Please enter the vector F in the form [1;2;3;4]') 
f2 = input('F = ') 
disp('Please enter your initial condition U(0)in the form [0;0;0;0]') 
u2 = input('U(0) = ') 
 
x=[0:1:((n1/c1)-1)];  %x vector constructed to use cubic spline interpolation 
xx = [0:((n1/c1)-1)/((n2/c2)-1):((n1/c1)-1)]; %xx vector constructed to use cubic spline interpolation 
 
while (max < 100) 
 
 UU1 = Jacobi(n1, c1, f1, u1); %Jacobian Method on first domain 
 
 for i=1:1:(n1/c1) 
     y(i,1)=UU1((n1-((i-1)*c1)-1),1); %y vector related to x vector  
 end 
    
 yy = SPLINE(x, y, xx); %yy vector found using spline interpolation 
 
 for i=1:1:(n2/c2) 
    u2((1+n2-(i*c2)),1)= yy(i,1); %yy vector is new left boundary of second domain 
 end 
 
 UU2 = Jacobi(n2, c2, f2, u2); %Jacobian Method on second domain 
 
 for i=1:1:(n2/c2) 
     yy(i,1)=UU2((n2-(i*c2)+2),1); %yy vector related to xx vector 
 end 
 
 y  = SPLINE(xx, yy, x); %y vector found using spline interpolation 
 
 for i=0:1:((n1/c1)-1) 
    u1(n1-(i*c1),1)=y(i+1,1); %y vector is new right boundary of first domain 
 end 
 
 max = max+1; 
end 
UU1 %display UU1 and UU2 results 
UU2       
 
%%%%%%%%%%%%                 end interface.m     %%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%% 
%   jacobi.m                                             % 
%%%%%%%%%%%%%%%%%%%%% 
 
function UU = jacobi(n, c, f, u) 
 
for i=1:1:n 
    k(i,1)=-4; 
end 
 
A= diag(k,0)+ diag(ones((n-1),1), -1) + diag(ones((n-1),1), 1) +diag(ones((n-c),1),c)+ 
    diag(ones((n-c),1),-c); 
 
for i=1:1:((n/c)-1) 
    A(i*c,(i*c+1))=0; 
    A((i*c+1),i*c)=0; 
end 
 
tolerance = 0.000001; 
 
for i=1:n    % Constructing the diagonal matrix D 
   D(i,i)= A(i,i); 
end; 
 
for i=1:n   % Constructing the lower diagonal matrix L 
   for j=1:n   % and the upper diagonal matrix U 
      if j < i 
         L(i,j) = -A(i,j); 
         U(i,j) = [0]; 
      else 
         L(i,j) = [0]; 
         if j > i 
            U(i,j) = -A(i,j); 
         else 
            U(i,j) = [0]; 
         end; 
      end; 
   end; 
end; 
 
 %Jacobi 
      T = inv(D) * (L + U); 
      C = inv(D) * f; 
 
error=1; 
count=0; 
while (error > tolerance)    % will continue to calculate until within tolerance 
    answer=T*u + C; 
    error=norm(answer - u, inf); 
    count=count+1; 
    u=answer; 
end; 
UU=u; 
 
%%%%%%%%%%%%                 end jacobi.m     %%%%%%%%%%%%%%% 
 


