

Interface Numerical Method for Coupling

Independently Modeled Substructures

August 23, 2004

Dr. Padmanabhan Seshaiyer Christina Anaya
Faculty Mentor McNair Scholar

________________________ ________________________

 2

ABSTRACT

In many real world applications, especially in engineering, solutions over large complex
structures and/or domains are required. By dividing the domain into substructures, solving
the problem on each independent region, and then combining the independent solutions to
analyze the entire region, the solution to the global domain can be found efficiently. In this
paper, I will discuss background research in this field, illustrate examples of different
methods that have been used, formulate an interface numerical method that can be employed
for coupling independently modeled substructures, and outline a solution methodology for
solving such problems.

1. INTRODUCTION

 In the world today, teamwork has become the norm. Thus as applications are divided
into separate components among different people or companies, a problem arises when the
components must be assembled. Numerical methods using finite elements allow the
combination of such separate component models in an efficient manner.

For example, one may be interested in studying a physical process on the large
domain Ω (see Figure 1).

Figure 1. Global domain

To simplify the solution methodology, the global domain Ω can be divided into two separate
subdomains, Ω1 and Ω2 (see Figure 2).

Figure 2. Global domain divided into two subdomains

The subdomains may be analyzed by independent modelers and hence may possess different
mesh properties. This causes problems when trying to integrate the two due to the non-
conformity at the interface (see Figure 3).

Figure 3. Assembled global domain showing overlapping interface

 3

To study a physical system, a mathematical model is often constructed. To solve the
associated mathematical model one may employ one of the two types of solution
methodologies: analytical and numerical. An analytical solution is an exact answer to a
problem. On the other hand, a numerical solution is just an approximation. The word
“approximation” may cast doubt in people’s mind; however there are numerous
mathematical methods that demonstrate that an “approximate” answer can be found which
estimates the analytical solution within the precision available on today’s computer systems.
A model flowchart of the process is described in Figure 4.

Figure 4. Solution methodology

If the mathematical model is simple, one can obtain an analytical solution. Most real world
problems, however, are much more complex and hence require a numerical solution. In this
paper, one such complex application is examined. The numerical methods that were used in
this project were the finite difference method, the Jacobi iterative method, and spline
interpolation techniques for solving a model diffusion equation on a complex domain.

2. BACKGROUND AND METHODS

In this section, we describe the techniques that will be employed later for one dimensional
and two dimensional model problems.

2.1 A One Dimensional Model Problem

Consider the following physical system consisting of an elastic bar under stress via a
tangential force F(x) with fixed endpoints a and b (see Figure 5). The objective is to
determine the displacement U(x).

Figure 5. Elastic bar

Physical System

Mathematical
Model

Analytical
Solution
“exact”

Numerical
Solution

“approximation”

 4

The mathematical model can be derived as follows. First recall Hooke’s Law,
dx
dUE=σ .

As demonstrated in [4], Hooke’s law states that stress is directly proportional to strain, where
E is a constant of proportionality known as Young’s Modulus. For simplicity we let E = 1

and the equation becomes
dx
dU

=σ . Taking the derivative of both sides yields .2

2

dx
Ud

dx
d

=
σ

Moreover, the equilibrium of the elastic bar system yields)(xF
dx
d

−=
σ . The model then

becomes the following boundary value problem (BVP),

0)(
0)(

,)(2

2

=
=

<<=−

bU
aU

bxaxF
dx

Ud

where U(a) = 0 and U(b) =0 are considered the boundary conditions which are needed to
solve the differential equation uniquely. To find U(x) numerically, first divide the interval
[a, b] into N subintervals with the nodes a = x0, x1, x2, …, xi, xi+1, …., xN = b. Then rewrite
the continuous differential equation on each subinterval to give a discrete differential
equation by using the finite difference method as follows,

2
11

2

2

11

1

1
2

2

)()(2)(

)()()()(

)()(

)()(

x
xUxUxU

dx
Ud

x
x

xUxU
x

xUxU

x

x
dx
dUx

dx
dU

x
xgxg

dx
dg

dx
dU

dx
d

dx
Ud

iii

iiii

ii

ii

Δ
+−

≅∴

Δ
Δ
−

−
Δ
−

=

Δ

−
=

Δ
−

==⎟
⎠
⎞

⎜
⎝
⎛=

−+

−+

+

+

Since)(2

2

xF
dx

Ud
−= , the equation becomes

)(
)()(2)(

2
11 xF

x
xUxUxU iii −=

Δ
+− −+ .

 5

Imposing the discrete equation for i = 2, 3, …., (n-1) and considering the given boundary
conditions, the result is the following linear system of equations.

The linear system can be represented as AU = F, where A is the tridiagonal matrix, and U and
F are the vectors at each point xi. This can be solved with Matlab using the command
U = A \ F.

Note that the finite difference method can also be used to solve more general
boundary value problems, such as [5]

)()()(xfyxQyxPy =+′+′′ ,

with y as the dependent variable and subject to the conditions 10)(,)(ybyyay == . The
finite difference equation would be:

1
2

1
2)

2
1()2()

2
1(−+ −++−++= iiiiiii yPhyQhyPhfh ,

where)(),(),(),(,)(
iiiiiiii xyyxffxQQxPP

n
abh ====

−
= . The difference equation

would be used to calculate the numerical solution in a similar fashion as the model problem.

Also note that the matrix A has a lot of zero entries which makes it a sparse matrix.
An iterative technique for solving large systems with a large number of zero entries is the
Jacobi Method. As is explained in [1], “to solve the linear system Ax = b” requires an initial
approximation x(0) to the solution x, which “generates a sequence of vectors that converges to
x.” With the Jacobi Iterative Method, the system Ax = b is converted into an equivalent
system of the form x = T x + c, where T is a fixed matrix and c is a vector. The initial
approximation x(0) is chosen and the solution vector is generated by computing

x(k) = T x(k-1) + c,

for k = 1, 2, 3,... Iterative techniques are efficient when considering computational time and
computer storage [1].

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ−=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

−

−

−

−

)(
)(

....
....

)(
)(
)(

)(
)(

....

....
)(
)(
)(

210......................0
1210...................0
0.................................0
0.................................0
0...........01210
0...........00121
0..........00012

1

2

4

3

2

2

1

2

4

3

2

n

n

n

n

xF
xF

xF
xF
xF

x

xU
xU

xU
xU
xU

 6

2.2 A Two Dimensional Model Problem

Similar physical systems, as in 1-D, can be modeled using a two dimensional representation.
An example of a 2-D model is the temperature distribution in a slab [5] (see Figure 6.)

Figure 6. Thin slab

This is a slab of uniform material and thickness, t. If the temperature within each element of
size dx X dy is represented with the dependent variable, U, then Uxy is the temperature at each
x-y point of the slab. An extension of the model introduced in § 2.1 to 2-D can be given by

()
.,),(

,,
,),(

,),(

),(),(),,(

cxaUdxU

dybUycU
cxaUbxU

dybUyaU

dcbaxyxFUU

xd

cy

xb

ay

yyxx

<<=

<<=
<<=

<<=

×∈=−−

One can discretize this model over the domain Ω (see Figure 7).

Figure 7. Discretization of domain Ω

using finite differences again,

).,(
),(),(2),(),(),(2),(

2
11

2
11

ji
jijijijijiji yxF

y
yxUyxUyxU

x
yxUyxUyxU

−=
Δ

+−
+

Δ

+− −+−+

 7

If the step size in the x-direction equals the step size in the y-direction, i.e. yx Δ=Δ , the
equation becomes

),(
),(4),(),(),(),(

2
1111

ji
jijijijiji yxF

x
yxUyxUyxUyxUyxU

−=
Δ

−+++ −+−+ .

To simplify notation, each point (x, y) is represented by a single number called a node. For
example, (1, 1) is node 15 and (7, 3) is node 7 as shown in Figure 8.

Figure 8. Nodal numbering

The discretized system of equations becomes:

where Δh= Δx = Δy is the space between each node.

2.3 Interpolation

When data over a large domain is required and only minimal data points are available, the
result may exhibit erratic behavior between the points. Cubic spline interpolation computes
intermediate values between each data point [3]. If data is known at specific values, say x =
1, 2, 3, a reasonable estimation of x at 1.5 and 2.5 can be found through interpolation. In
Matlab, YY = SPLINE(X, Y, XX) uses cubic spline interpolation to find a vector YY
corresponding to XX which is the x value vector of the data points for which the estimation is

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

21

20

3

2

1

2

21

20

3

2

1

....

....
....
....

410000010000000000000
141000001000000000000

.......

.......

.......
000000000001000001410
000000000000100000141
000000000000010000014

F
F

F
F
F

h

U
U

U
U
U

 8

required. X and Y are the given data vectors [3]. For example, as shown in Figure 9, if X =
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and Y = sin(X), the graph is

Figure 9. Graph of Y = sin(X)

Now, if spline interpolation is used and XX is defined as [0:0.5:10], the graph is much
smoother (see Figure 10).

Figure 10. Graph of YY = sin(XX) using spline interpolation

The interpolation allows for the refinement of the YY values for more points in the domain.

Figure 11. Graph of Y = sin (X) in blue and graph of YY using spline interpolation in green

 9

3. THE INTERFACE PROBLEM

In this section, we will describe the interface problem and formulate an overlapping interface
technique to solve it.

3.1 Division of Domain

Consider a global domain Ω divided into two subdomains, Ω1 and Ω2, with m = 4 and n = 3,
where m and n represent the number of rows in each subdomain (see Figures 12 & 13). Let
us for simplicity assume that both subdomains have equal number of columns. The solution
is computed independently for Ω1 and Ω2 using the previously discussed methods.

Figure 12. Global domain in x-y plot

Figure 13. Subdomains, Ω1 and Ω2, with m = 4 and n = 3, respectively

Once the subdomains are combined, the individual nodes on the interface do not align. A
magnified view of the interface can be seen in Figure 14.

Figure 14. Overlapping interface magnified

 10

With the use of cubic spline data interpolation, an interface numerical solution is constructed,
which serves as a boundary condition for each iteration, as described next.

3.2 Methodology

The code for the overlapping method, found in the appendix, allows for a mesh of any size to
be constructed by passing the number of nodes and the number of columns in which the
nodes will lie. In Ω1 of Figure 12, the number of nodes and number of columns in which the
nodes lie are 25 and 5, respectively, so the parameters are (25, 5) . The program constructs
the A matrix and allows the user to enter F and the boundary conditions, as examined in §
2.1. Once an initial U1 vector is found, data from that vector is used for the interpolation.
Data calculated using the spline interpolation is then used to solve the problem on Ω2. The
same method is followed in the second domain with new boundary values. U2 is found for
this domain and used for interpolation. The process is continued until the global solution is
within a predefined tolerance. Next, we describe a pseudo code for the overlapping method
algorithm.

3.3 Psuedo Code

Do
 UU1 = Jacobi (n1, c1, f1, U1)
 n1 = number of nodes in first domain
 c1 = number of columns in which the nodes will lie
 f1 = F vector
 U1 = U vector (initial guess U1

(0))
 UU1 = new U1 which is returned
 YY = SPLINE(X, Y, XX)
 X = [0:1:(n1/c1-1)]

Y = the vector constructed from the UU1 results that correspond with
the left boundary of the second domain

XX = [0:(n1/c1-1)/(n2/c2-1):(n1/c1-1)]
YY = the left boundary condition of the second domain

 Use YY as a right boundary to determine U2
 UU2 = Jacobi (n2, c2, f2, U2)
 n2 = number of nodes in second domain
 c2 = number of columns in which the nodes will lie
 f2 = F vector
 U2 = U vector
 UU2 = new U2 which is returned
 Y = SPLINE(XX, YY, X)

XX = [0:(n1/c1-1)/(n2/c2-1):(n1/c1-1)]
YY = the vector constructed from the UU2 results that correspond with

the right boundary of the first domain
X = [0:1:(n1/c1-1)]
Y = the new right boundary of the first domain

 Use Y as a left boundary to determine U1

While (max number of iterations or predefined tolerance has not been reached)

 11

4. FUTURE RESEARCH

When the large global domain is divided into several subdomains, each local domain can be
analyzed independently. However, in some instances, information calculated in one local
domain is required to calculate the solution of another. If each local domain is working on
different processors, the sharing of such information would be easy. Message Passing
Interface, MPI, is a library specification “designed for high performance on parallel machines
and workstation clusters [2].” Information would be shared between processors or each of
the domains allowing for ease of reconstruction of the global domain. We propose to
implement the solution methodology developed herein in parallel using a MPI algorithm.

5. ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Padmanabhan Seshaiyer, my faculty
mentor, for his guidance, dedication, and expertise. I would also like to thank Mr. Edward
Swim, my graduate student mentor, for assisting me throughout the school year with his
knowledge of graduate school and research.

Special thanks to the McNair Scholars’ Program for supporting my research work and the
National Science Foundation project under grant DMS0207327 awarded to Dr. Seshaiyer for
motivating this problem.

6. REFERENCES

[1] Burden, Richard L. & Faires, J.D., Numerical Analysis, Brooks/Cole Publishing

Company, 1997.

[2] The Message Passing Interface (MPI), http://www-unix.mcs.anl.gov/mpi/

[3] Palm, William J., Matlab for Engineering Applications, McGraw-Hill, 1999.

[4] Serway, Raymond A. & Beichner, Robert J., Physics: For Scientists and Engineers,

Saunders College Publishing, 2000.

[5] Zill, Dennis G. & Cullen, Michael R., Differential Equations with Boundary-Value

Problems, Brooks/Cole Publishing Company, 1997.

 12

7. APPENDIX

%%%%%%%%%%%%%%%%%%%%%
% interface.m %
%%%%%%%%%%%%%%%%%%%%%

max = 0; %max number of iterations

n1 = input('Please enter the number of nodes in the first domain. ')
c1 = input('Please enter the number of columns in which the nodes will lie. ')
disp('Please enter the vector F in the form [1;2;3;4]')
f1 = input('F = ')
disp('Please enter your initial condition U(0)in the form [0;0;0;0]')
u1 = input('U(0) = ')

n2 = input('Please enter the number of nodes in the second domain. ')
c2 = input('Please enter the number of columns in which the nodes will lie ')
disp('Please enter the vector F in the form [1;2;3;4]')
f2 = input('F = ')
disp('Please enter your initial condition U(0)in the form [0;0;0;0]')
u2 = input('U(0) = ')

x=[0:1:((n1/c1)-1)]; %x vector constructed to use cubic spline interpolation
xx = [0:((n1/c1)-1)/((n2/c2)-1):((n1/c1)-1)]; %xx vector constructed to use cubic spline interpolation

while (max < 100)

 UU1 = Jacobi(n1, c1, f1, u1); %Jacobian Method on first domain

 for i=1:1:(n1/c1)
 y(i,1)=UU1((n1-((i-1)*c1)-1),1); %y vector related to x vector
 end

 yy = SPLINE(x, y, xx); %yy vector found using spline interpolation

 for i=1:1:(n2/c2)
 u2((1+n2-(i*c2)),1)= yy(i,1); %yy vector is new left boundary of second domain
 end

 UU2 = Jacobi(n2, c2, f2, u2); %Jacobian Method on second domain

 for i=1:1:(n2/c2)
 yy(i,1)=UU2((n2-(i*c2)+2),1); %yy vector related to xx vector
 end

 y = SPLINE(xx, yy, x); %y vector found using spline interpolation

 for i=0:1:((n1/c1)-1)
 u1(n1-(i*c1),1)=y(i+1,1); %y vector is new right boundary of first domain
 end

 max = max+1;
end
UU1 %display UU1 and UU2 results
UU2

%%%%%%%%%%%% end interface.m %%%%%%%%%%%%%%%

 13

%%%%%%%%%%%%%%%%%%%%%
% jacobi.m %
%%%%%%%%%%%%%%%%%%%%%

function UU = jacobi(n, c, f, u)

for i=1:1:n
 k(i,1)=-4;
end

A= diag(k,0)+ diag(ones((n-1),1), -1) + diag(ones((n-1),1), 1) +diag(ones((n-c),1),c)+
 diag(ones((n-c),1),-c);

for i=1:1:((n/c)-1)
 A(i*c,(i*c+1))=0;
 A((i*c+1),i*c)=0;
end

tolerance = 0.000001;

for i=1:n % Constructing the diagonal matrix D
 D(i,i)= A(i,i);
end;

for i=1:n % Constructing the lower diagonal matrix L
 for j=1:n % and the upper diagonal matrix U
 if j < i
 L(i,j) = -A(i,j);
 U(i,j) = [0];
 else
 L(i,j) = [0];
 if j > i
 U(i,j) = -A(i,j);
 else
 U(i,j) = [0];
 end;
 end;
 end;
end;

 %Jacobi
 T = inv(D) * (L + U);
 C = inv(D) * f;

error=1;
count=0;
while (error > tolerance) % will continue to calculate until within tolerance
 answer=T*u + C;
 error=norm(answer - u, inf);
 count=count+1;
 u=answer;
end;
UU=u;

%%%%%%%%%%%% end jacobi.m %%%%%%%%%%%%%%%

